A101191 G.f.: A(x) = Sum_{n>=0}a(n)/2^A004134(n)*x^n = limit_{n->oo} F(n)^(1/2^(n+1)) where F(n) is the n-th iteration of: F(0) = 1, F(n) = F(n-1)^2 + x^(2^n-1) for n>=1.
1, 1, -3, 23, -525, 2695, -29687, 191991, -10488701, 70977675, -968279181, 6752850945, -191225421641, 1363019302883, -19538003443615, 140961586090743, -16379289413266717, 119621607825995891, -1755802638936696081, 12944528671963135869, -383361262914445548739
Offset: 0
Keywords
Examples
The iteration begins: F(0) = 1, F(1) = F(0)^2 + x^(2^1-1) = 1 +x, F(2) = F(1)^2 + x^(2^2-1) = 1 +2*x +x^2 +x^3, F(3) = F(2)^2 + x^(2^3-1) = 1 +4*x +6*x^2 +6*x^3 +5*x^4 +2*x^5 +x^6 +x^7. The 2^(n+1)-th roots of F(n) tend to the limit of the g.f.: F(1)^(1/2^2) = 1 +1/4*x -3/32*x^2 +7/128*x^3 -77/2048*x^4 +231/8192*x^5 +... F(2)^(1/2^3) = 1 +1/4*x -3/32*x^2 +23/128*x^3 -525/2048*x^4 +2695/8192*x^5 +... F(3)^(1/2^4) = 1 +1/4*x -3/32*x^2 +23/128*x^3 -525/2048*x^4 +2695/8192*x^5 +... The limit of this process is the g.f. A(x) of this sequence. The coefficients of x^k in the 2^n powers of the g.f. A(x) begin: A^(2^0)=[1,1/4,-3/32,23/128,-525/2048,2695/8192,-29687/65536,...], A^(2^1)=[1,1/2,-1/8,5/16,-53/128,127/256,-677/1024,2221/2048,...], A^(2^2)=[1,1,0,1/2,-1/2,1/2,-5/8,9/8,-2,53/16,-89/16,155/16,...], A^(2^3)=[1,2,1,1,0,0,0,1/2,-1,3/2,-5/2,9/2,-8,14,-197/8,44,...], A^(2^4)=[1,4,6,6,5,2,1,1,0,0,0,0,0,0,0,1/2,-2,5,...], A^(2^5)=[1,8,28,60,94,116,114,94,69,44,26,14,5,2,1,1,0,0,...]. Note: the sum of the coefficients of x^k in F(n) equals A003095(n+1): 1, 2=1+1, 5=1+2+1+1, 26=1+4+6+6+5+2+1+1, ... The last n coefficients in F(n) read backwards are Catalan numbers (A000108).
Programs
-
PARI
{a(n)=local(F=1,A,L);if(n==0,A=1,L=ceil(log(n+1)/log(2)); for(k=1,L,F=F^2+x^(2^k-1)); A=polcoeff(F^(1/2^(L+1))+x*O(x^n),n));numerator(A)}
Comments