cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A101191 G.f.: A(x) = Sum_{n>=0}a(n)/2^A004134(n)*x^n = limit_{n->oo} F(n)^(1/2^(n+1)) where F(n) is the n-th iteration of: F(0) = 1, F(n) = F(n-1)^2 + x^(2^n-1) for n>=1.

Original entry on oeis.org

1, 1, -3, 23, -525, 2695, -29687, 191991, -10488701, 70977675, -968279181, 6752850945, -191225421641, 1363019302883, -19538003443615, 140961586090743, -16379289413266717, 119621607825995891, -1755802638936696081, 12944528671963135869, -383361262914445548739
Offset: 0

Views

Author

Paul D. Hanna, Dec 03 2004

Keywords

Comments

Although the power series for the g.f. A(x) diverges at x=1, the Euler transform of the power series A(x) at x=1 converges to the constant A076949: Sum_{n>=0}[Sum_{k=0..n}C(n,k)*a(k))/2^A004134(n) ]/2^(n+1) = 1.2259024435...

Examples

			The iteration begins:
F(0) = 1,
F(1) = F(0)^2 + x^(2^1-1) = 1 +x,
F(2) = F(1)^2 + x^(2^2-1) = 1 +2*x +x^2 +x^3,
F(3) = F(2)^2 + x^(2^3-1) = 1 +4*x +6*x^2 +6*x^3 +5*x^4 +2*x^5 +x^6 +x^7.
The 2^(n+1)-th roots of F(n) tend to the limit of the g.f.:
F(1)^(1/2^2) = 1 +1/4*x -3/32*x^2 +7/128*x^3 -77/2048*x^4 +231/8192*x^5 +...
F(2)^(1/2^3) = 1 +1/4*x -3/32*x^2 +23/128*x^3 -525/2048*x^4 +2695/8192*x^5 +...
F(3)^(1/2^4) = 1 +1/4*x -3/32*x^2 +23/128*x^3 -525/2048*x^4 +2695/8192*x^5 +...
The limit of this process is the g.f. A(x) of this sequence.
The coefficients of x^k in the 2^n powers of the g.f. A(x) begin:
A^(2^0)=[1,1/4,-3/32,23/128,-525/2048,2695/8192,-29687/65536,...],
A^(2^1)=[1,1/2,-1/8,5/16,-53/128,127/256,-677/1024,2221/2048,...],
A^(2^2)=[1,1,0,1/2,-1/2,1/2,-5/8,9/8,-2,53/16,-89/16,155/16,...],
A^(2^3)=[1,2,1,1,0,0,0,1/2,-1,3/2,-5/2,9/2,-8,14,-197/8,44,...],
A^(2^4)=[1,4,6,6,5,2,1,1,0,0,0,0,0,0,0,1/2,-2,5,...],
A^(2^5)=[1,8,28,60,94,116,114,94,69,44,26,14,5,2,1,1,0,0,...].
Note: the sum of the coefficients of x^k in F(n) equals A003095(n+1):
1, 2=1+1, 5=1+2+1+1, 26=1+4+6+6+5+2+1+1, ...
The last n coefficients in F(n) read backwards are Catalan numbers (A000108).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=1,A,L);if(n==0,A=1,L=ceil(log(n+1)/log(2)); for(k=1,L,F=F^2+x^(2^k-1)); A=polcoeff(F^(1/2^(L+1))+x*O(x^n),n));numerator(A)}

Formula

G.f. A(x) satisfies: A(x)^2 = Sum_{n>=0} A101190(n)/2^A005187(n)*x^n. G.f. A(x) satisfies: A(2*x)^4 = Sum_{n>=0} A101189(n)*(2x)^n.

A005187 a(n) = a(floor(n/2)) + n; also denominators in expansion of 1/sqrt(1-x) are 2^a(n); also 2n - number of 1's in binary expansion of 2n.

Original entry on oeis.org

0, 1, 3, 4, 7, 8, 10, 11, 15, 16, 18, 19, 22, 23, 25, 26, 31, 32, 34, 35, 38, 39, 41, 42, 46, 47, 49, 50, 53, 54, 56, 57, 63, 64, 66, 67, 70, 71, 73, 74, 78, 79, 81, 82, 85, 86, 88, 89, 94, 95, 97, 98, 101, 102, 104, 105, 109, 110, 112, 113, 116, 117, 119, 120, 127, 128
Offset: 0

Views

Author

N. J. A. Sloane, May 20 1991; Allan Wilks, Dec 11 1999

Keywords

Comments

Also exponent of the largest power of 2 dividing (2n)! (A010050) and (2n)!! (A000165).
Write n in binary: 1ab..yz, then a(n) = 1ab..yz + ... + 1ab + 1a + 1. - Ralf Stephan, Aug 27 2003
Also numbers having a partition into distinct Mersenne numbers > 0; A079559(a(n))=1; complement of A055938. - Reinhard Zumkeller, Mar 18 2009
Wikipedia's article on the "Whitney Immersion theorem" mentions that the a(n)-dimensional sphere arises in the Immersion Conjecture proved by Ralph Cohen in 1985. - Jonathan Vos Post, Jan 25 2010
For n > 0, denominators for consecutive pairs of integral numerator polynomials L(n+1,x) for the Legendre polynomials with o.g.f. 1 / sqrt(1-tx+x^2). - Tom Copeland, Feb 04 2016
a(n) is the total number of pointers in the first n elements of a perfect skip list. - Alois P. Heinz, Dec 14 2017
a(n) is the position of the n-th a (indexing from 0) in the fixed point of the morphism a -> aab, b -> b. - Jeffrey Shallit, Dec 24 2020
Numbers that can be expressed as the sum of distinct numbers of the form 2^k - 1 (lenient Mersenne numbers, A000225). This follows from the 2N - Hamming weight definition. A corollary is that these are the numbers with no 2 in their skew-binary representation (cf. A169683). - Allan C. Wechsler, Feb 25 2025

Examples

			G.f. = x + 3*x^2 + 4*x^3 + 7*x^4 + 8*x^5 + 10*x^6 + 11*x^7 + 15*x^8 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001511 (first differences), A122247 (partial sums), A055938 (complement).

Programs

  • Haskell
    a005187 n = a005187_list !! n
    a005187_list = 0 : zipWith (+) [1..] (map (a005187 . (`div` 2)) [1..])
    -- Reinhard Zumkeller, Nov 07 2011, Oct 05 2011
    
  • Magma
    [n + Valuation(Factorial(n), 2): n in [0..70]]; // Vincenzo Librandi, Jun 11 2019
    
  • Maple
    A005187 := n -> 2*n - add(i, i=convert(n, base, 2)):
    seq(A005187(n), n=0..65); # Peter Luschny, Apr 08 2014
  • Mathematica
    a[0] = 0; a[n_] := a[n] = a[Floor[n/2]] + n; Table[ a[n], {n, 0, 50}] (* or *)
    Table[IntegerExponent[(2n)!, 2], {n, 0, 65}] (* Robert G. Wilson v, Apr 19 2006 *)
    Table[2n-DigitCount[2n,2,1],{n,0,70}] (* Harvey P. Dale, May 24 2014 *)
  • PARI
    {a(n) = if( n<0, 0, valuation((2*n)!, 2))}; /* Michael Somos, Oct 24 2002 */
    
  • PARI
    {a(n) = if( n<0, 0, sum(k=1, n, (2*n)\2^k))}; /* Michael Somos, Oct 24 2002 */
    
  • PARI
    {a(n) = if( n<0, 0, 2*n - subst( Pol( binary( n ) ), x, 1) ) }; /* Michael Somos, Aug 28 2007 */
    
  • PARI
    a(n)=my(s=n);while(n>>=1,s+=n);s \\ Charles R Greathouse IV, Apr 07 2012
    
  • PARI
    a(n)=2*n-hammingweight(n) \\ Charles R Greathouse IV, Jan 07 2013
    
  • Python
    def A005187(n): return 2*n-bin(n).count('1') # Chai Wah Wu, Jun 03 2021
  • Sage
    @CachedFunction
    def A005187(n): return A005187(n//2) + n if n > 0 else 0
    [A005187(n) for n in range(66)]  # Peter Luschny, Dec 13 2012
    

Formula

a(n) = A011371(2n+1) = A011371(n) + n, n >= 0.
A046161(n) = 2^a(n).
For m>0, let q = floor(log_2(m)); a(2m+1) = 2^q + 3m + Sum_{k>=1} floor((m-2^q)/2^k); a(2m) = a(2m+1) - 1. - Len Smiley
a(n) = Sum_{k >= 0} floor(n/2^k) = n + A011371(n). - Henry Bottomley, Jul 03 2001
G.f.: A(x) = Sum_{k>=0} x^(2^k)/((1-x)*(1-x^(2^k))). - Ralf Stephan, Dec 24 2002
a(n) = Sum_{k=1..n} A001511(k), sum of binary Hamming distances between consecutive integers up to n. - Gary W. Adamson, Jun 15 2003
Conjecture: a(n) = 2n + O(log(n)). - Benoit Cloitre, Oct 07 2003 [true as a(n) = 2*n - hamming_weight(2*n). Joerg Arndt, Jun 10 2019]
Sum_{n=2^k..2^(k+1)-1} a(n) = 3*4^k - (k+4)*2^(k-1) = A085354(k). - Philippe Deléham, Feb 19 2004
From Hieronymus Fischer, Aug 14 2007: (Start)
Recurrence: a(n) = n + a(floor(n/2)); a(2n) = 2n + a(n); a(n*2^m) = 2*n*(2^m-1) + a(n).
a(2^m) = 2^(m+1) - 1, m >= 0.
Asymptotic behavior: a(n) = 2n + O(log(n)), a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= 2n-1; equality holds for powers of 2.
a(n) >= 2n-1-floor(log_2(n)); equality holds for n = 2^m-1, m > 0.
lim inf (2n - a(n)) = 1, for n-->oo.
lim sup (2n - log_2(n) - a(n)) = 0, for n-->oo.
lim sup (a(n+1) - a(n) - log_2(n)) = 1, for n-->oo. (End)
a(n) = 2n - A000120(n). - Paul Barry, Oct 26 2007
PURRS demo results: Bounds for a(n) = n + a(n/2) with initial conditions a(1) = 1: a(n) >= -2 + 2*n - log(n)*log(2)^(-1), a(n) <= 1 + 2*n for each n >= 1. - Alexander R. Povolotsky, Apr 06 2008
If n = 2^a_1 + 2^a_2 + ... + 2^a_k, then a(n) = n-k. This can be used to prove that 2^n maximally divides (2n!)/n!. - Jon Perry, Jul 16 2009
a(n) = Sum_{k>=0} A030308(n,k)*A000225(k+1). - Philippe Deléham, Oct 16 2011
a(n) = log_2(denominator(binomial(-1/2,n))). - Peter Luschny, Nov 25 2011
a(2n+1) = a(2n) + 1. - M. F. Hasler, Jan 24 2015
a(n) = A004134(n) - n. - Cyril Damamme, Aug 04 2015
G.f.: (1/(1 - x))*Sum_{k>=0} (2^(k+1) - 1)*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jul 23 2017

A123854 Denominators in an asymptotic expansion for the cubic recurrence sequence A123851.

Original entry on oeis.org

1, 4, 32, 128, 2048, 8192, 65536, 262144, 8388608, 33554432, 268435456, 1073741824, 17179869184, 68719476736, 549755813888, 2199023255552, 140737488355328, 562949953421312, 4503599627370496, 18014398509481984, 288230376151711744, 1152921504606846976
Offset: 0

Views

Author

Keywords

Comments

A cubic analog of the asymptotic expansion A116603 of Somos's quadratic recurrence sequence A052129. Numerators are A123853.
Equals 2^A004134(n); also the denominators in expansion of (1-x)^(-1/4). - Alexander Adamchuk, Oct 27 2006
All terms are powers of 2 and log_2 a(n) = A004134(n) = 3*n - A000120(n). - Alexander Adamchuk, Oct 27 2006 [Edited by Petros Hadjicostas, May 14 2020]
Is this the same sequence as A088802? - N. J. A. Sloane, Mar 21 2007
Almost certainly this is the same as A088802. - Michael Somos, Aug 23 2007
Denominators of Gegenbauer_C(2n,1/4,2). The denominators of Gegenbauer_C(n,1/4,2) give the doubled sequence. - Paul Barry, Apr 21 2009
If the Greubel formula in A088802 and the Luschny formula here are correct (they are the same), the sequence is a duplicate of A088802. - R. J. Mathar, Aug 02 2023

Examples

			A123851(n) ~ c^(3^n)*n^(- 1/2)/(1 + 3/(4*n) - 15/(32*n^2) + 113/(128*n^3) - 5397/(2048*n^4) + ...) where c = 1.1563626843322... is the cubic recurrence constant A123852.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.

Crossrefs

Programs

  • Maple
    f:=proc(t,x) exp(sum(ln(1+m*x)/t^m,m=1..infinity)); end; for j from 0 to 29 do denom(coeff(series(f(3,x),x=0,30),x,j)); od;
    # Alternatively:
    A123854 := n -> denom(binomial(1/4,n)):
    seq(A123854(n), n=0..25); # Peter Luschny, Apr 07 2016
  • Mathematica
    Denominator[CoefficientList[Series[ 1/Sqrt[Sqrt[1-x]], {x, 0, 25}], x]] (* Robert G. Wilson v, Mar 23 2014 *)
  • PARI
    vector(25, n, n--; denominator(binomial(1/4,n)) ) \\ G. C. Greubel, Aug 08 2019
  • Sage
    # uses[A000120]
    def A123854(n): return 1 << (3*n-A000120(n))
    [A123854(n) for n in (0..25)]  # Peter Luschny, Dec 02 2012
    

Formula

From Alexander Adamchuk, Oct 27 2006: (Start)
a(n) = 2^A004134(n).
a(n) = 2^(3n - A000120(n)). (End)
a(n) = denominator(binomial(1/4,n)). - Peter Luschny, Apr 07 2016

A220002 Numerators of the coefficients of an asymptotic expansion in even powers of the Catalan numbers.

Original entry on oeis.org

1, 5, 21, 715, -162877, 19840275, -7176079695, 1829885835675, -5009184735027165, 2216222559226679575, -2463196751104762933637, 1679951011110471133453965, -5519118103058048675551057049, 5373485053345792589762994345215, -12239617587594386225052760043303511
Offset: 0

Views

Author

Peter Luschny, Dec 27 2012

Keywords

Comments

Let N = 4*n+3 and A = sum_{k>=0} a(k)/(A123854(k)*N^(2*k)) then
C(n) ~ 8*4^n*A/(N*sqrt(N*Pi)), C(n) = (4^n/sqrt(Pi))*(Gamma(n+1/2)/ Gamma(n+2)) the Catalan numbers A000108.
The asymptotic expansion of the Catalan numbers considered here is based on the Taylor expansion of square root of the sine cardinal. This asymptotic series involves only even powers of N, making it more efficient than the asymptotic series based on Stirling's approximation to the central binomial which involves all powers (see for example: D. E. Knuth, 7.2.1.6 formula (16)). The series is discussed by Kessler and Schiff but is included as a special case in the asymptotic expansion given by J. L. Fields for quotients Gamma(x+a)/Gamma(x+b) and discussed by Y. L. Luke (p. 34-35), apparently overlooked by Kessler and Schiff.

Examples

			With N = 4*n+3 the first few terms of A are A = 1 + 5/(4*N^2) + 21/(32*N^4) + 715/(128*N^6) - 162877/(2048*N^8) + 19840275/(8192*N^10). With this A C(n) = round(8*4^n*A/(N*sqrt(N*Pi))) for n = 0..39 (if computed with sufficient numerical precision).
		

References

  • Donald E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 4: Generating All Trees—History of Combinatorial Generation, 2006.
  • Y. L. Luke, The Special Functions and their Approximations, Vol. 1. Academic Press, 1969.

Crossrefs

The logarithmic version is A220422. Appears in A193365 and A220466.
Cf. A220412.

Programs

  • Maple
    A220002 := proc(n) local s; s := n -> `if`(n > 0, s(iquo(n,2))+n, 0);
    (-1)^n*mul(4*i+2, i = 1..2*n)*2^s(iquo(n,2))*coeff(taylor(sqrt(sin(x)/x), x,2*n+2), x, 2*n) end: seq(A220002(n), n = 0..14);
    # Second program illustrating J. L. Fields expansion of gamma quotients.
    A220002 := proc(n) local recF, binSum, swing;
    binSum := n -> add(i,i=convert(n,base,2));
    swing := n -> n!/iquo(n, 2)!^2;
    recF := proc(n, x) option remember; `if`(n=0, 1, -2*x*add(binomial(n-1,2*k+1)*bernoulli(2*k+2)/(2*k+2)*recF(n-2*k-2,x),k=0..n/2-1)) end: recF(2*n,-1/4)*2^(3*n-binSum(n))*swing(4*n+1) end:
  • Mathematica
    max = 14; CoefficientList[ Series[ Sqrt[ Sinc[x]], {x, 0, 2*max+1}], x^2][[1 ;; max+1]]*Table[ (-1)^n*Product[ (2*k+1), {k, 1, 2*n}], {n, 0, max}] // Numerator (* Jean-François Alcover, Jun 26 2013 *)
  • Sage
    length = 15; T = taylor(sqrt(sin(x)/x),x,0,2*length+2)
    def A005187(n): return A005187(n//2) + n if n > 0 else 0
    def A220002(n):
        P = mul(4*i+2 for i in (1..2*n)) << A005187(n//2)
        return (-1)^n*P*T.coefficient(x, 2*n)
    [A220002(n) for n in range(length)]
    
  • Sage
    # Second program illustrating the connection with the Euler numbers.
    def A220002_list(n):
        S = lambda n: sum((4-euler_number(2*k))/(4*k*x^(2*k)) for k in (1..n))
        T = taylor(exp(S(2*n+1)),x,infinity,2*n-1).coefficients()
        return [t[0].numerator() for t in T][::-1]
    A220002_list(15)

Formula

Let [x^n]T(f(x)) denote the coefficient of x^n in the Taylor expansion of f(x) then r(n) = (-1)^n*prod_{i=1..2n}(2i+1)*[x^(2*n)]T(sqrt(sin(x)/x)) is the rational coefficient of the asymptotic expansion (in N=4*n+3) and a(n) = numerator(r(n)) = r(n)*2^(3*n-bs(n)), where bs(n) is the binary sum of n (A000120).
Also a(n) = numerator([x^(2*n)]T(exp(S))) where S = sum_{k>=1}((4-E(2*k))/ (4*k)*x^(2*k)) and E(n) the Euler numbers A122045.
Also a(n) = sf(4*n+1)*2^(3*n-bs(n))*F_{2*n}(-1/4) where sf(n) is the swinging factorial A056040, bs(n) the binary sum of n and F_{n}(x) J. L. Fields' generalized Bernoulli polynomials A220412.
In terms of sequences this means
r(n) = (-1)^n*A103639(n)*A008991(n)/A008992(n),
a(n) = (-1)^n*A220371(n)*A008991(n)/A008992(n).
Note that a(n) = r(n)*A123854(n) and A123854(n) = 2^A004134(n) = 8^n/2^A000120(n).
Formula from Johannes W. Meijer:
a(n) = d(n+1)*A098597(2*n+1)*(A008991(n)/A008992(n)) with d(1) = 1 and
d(n+1) = -4*(2*n+1)*A161151(n)*d(n),
d(n+1) = (-1)^n*2^(-1)*(2*(n+1))!*A060818(n)*A048896(n).

A004130 Numerators in expansion of (1-x)^{-1/4}.

Original entry on oeis.org

1, 1, 5, 15, 195, 663, 4641, 16575, 480675, 1762475, 13042315, 48612265, 729183975, 2748462675, 20809788825, 79077197535, 4823709049635, 18443593425075, 141400882925575, 543277076503525, 8366466978154285, 32270658344309385
Offset: 0

Views

Author

Keywords

Comments

Numerators in expansion of sqrt(1/sqrt(1-4x)). - Paul Barry, Jul 12 2005
Denominators are in A088802. - Michael Somos, Aug 23 2007

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Binomial[-1/4, n] (-1)^n], {n, 0, 20}]
  • PARI
    {a(n) = if( n<0, 0, numerator( polcoeff( (1 - x +x*O(x^n))^(-1/4), n ) ) ) } /* Michael Somos, Aug 23 2007 */

Formula

a(n) = prod(k=1, n, (4k-3)/k * 2^A007814(k)), proved by Mitch Harris, following a conjecture by Ralf Stephan.
a(n) = 2^(e_2((2n)!)-n)/n! Product[4k+1,{k,0,n-1}], where e_2((2n)!) is the highest power of 2 that divides (2n)! (sequence A005187). - Emanuele Munarini, Jan 25 2011
Numerators in (1-4t)^(-1/4) = 1 + t + (5/2)t^2 + (15/2)t^3 + (195/8)t^4 + (663/8)t^5 + (4641/16)t^6 + (16575/16)t^7 + ... = 1 + t + 5*t^2/2! + 45*t^3/3! + 585*t^4/4! + ... = e.g.f. for the quartic factorials A007696 (cf. A094638). - Tom Copeland, Dec 04 2013

A101189 G.f. A(x) is defined as the limit A(x) = lim_{n->oo} F(n)^(1/2^(n-1)) where F(n) is defined by F(n) = F(n-1)^2 + (2*x)^(2^n-1) for n >= 1 with F(0) = 1.

Original entry on oeis.org

1, 2, 0, 4, -8, 16, -40, 144, -512, 1696, -5696, 19840, -70048, 247744, -880128, 3152768, -11386624, 41389568, -151273728, 555794944, -2052141056, 7610274816, -28331018240, 105833345024, -396594444800, 1490425179136, -5615651143680, 21209004267520, -80276663808000
Offset: 0

Views

Author

Paul D. Hanna, Dec 03 2004

Keywords

Comments

Sequences A101190 and A101191 are related to doubly exponential numbers A003095 and to Catalan numbers (A000108).

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^3 - 8*x^4 + 16*x^5 - 40*x^6 + 144*x^7 - 512*x^8 + 1696*x^9 - 5696*x^10 + 19840*x^11 - 70048*x^12 + ...
GENERATING METHOD.
We can illustrate the generating method for g.f. A(x) as follows.
Given F(n) = F(n-1)^2 + (2*x)^(2^n-1) for n >= 1 with F(0) = 1,
the first few polynomials generated by F(n) begin
F(0) = 1,
F(1) = F(0)^2 + (2*x)^(2^1-1) = 1 + 2*x,
F(2) = F(1)^2 + (2*x)^(2^2-1) = 1 + 4*x + 4*x^2 + 8*x^3,
F(3) = F(2)^2 + (2*x)^(2^3-1) = 1 + 8*x + 24*x^2 + 48*x^3 + 80*x^4 + 64*x^5 + 64*x^6 + 128*x^7,
F(4) = F(3)^2 + (2*x)^(2^4-1) = = 1 + 16*x + 112*x^2 + 480*x^3 + 1504*x^4 + 3712*x^5 + 7296*x^6 + 12032*x^7 + 17664*x^8 + 22528*x^9 + 26624*x^10 + 28672*x^11 + 20480*x^12 + 16384*x^13 + 16384*x^14 + 32768*x^15,
...
and the 2^(n-1)-th root of F(n) yields the series shown by
F(1)^(1/2^0) = 1 + 2*x,
F(2)^(1/2^1) = 1 + 2*x + 4*x^3 - 8*x^4 + 16*x^5 - 40*x^6 + 112*x^7 - 320*x^8 + 928*x^9 - 2752*x^10 + 8320*x^11 - 25504*x^12 + ...,
F(3)^(1/2^2) = 1 + 2*x + 4*x^3 - 8*x^4 + 16*x^5 - 40*x^6 + 144*x^7 - 512*x^8 + 1696*x^9 - 5696*x^10 + 19840*x^11 - 70048*x^12 + ...,
F(4)^(1/2^3) = 1 + 2*x + 4*x^3 - 8*x^4 + 16*x^5 - 40*x^6 + 144*x^7 - 512*x^8 + 1696*x^9 - 5696*x^10 + 19840*x^11 - 70048*x^12 + ...,
...
The limit of this process tends to the g.f. A(x).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(F=1,A,L); if(n==0,A=1, L = ceil(log(n+1)/log(2)); for(k=1,L, F = F^2 + (2*x)^(2^k-1)  +x*O(x^n)); A = polcoeff(F^(1/(2^(L-1))),n)); A}
    for(n=0,32, print1(a(n),", "))

Formula

G.f. A(x) = ( Sum_{n>=0} A101190(n)/2^A005187(n) * (2*x)^n )^2.
G.f. A(x) = ( Sum_{n>=0} A101191(n)/2^A004134(n) * (2*x)^n )^4.

Extensions

Entry revised by Paul D. Hanna, Mar 05 2024

A082691 a(1)=1, a(2)=2, then if the first 3*2^k-1 terms are a(1), a(2), ..., a(3*2^k - 1), the first 3*2^(k+1)-1 terms are a(1), a(2), ..., a(3*2^k - 1), a(1), a(2), ..., a(3*2^k - 1), a(3*2^k-1) + 1.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 5, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 5, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 5, 6, 7, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Comments

Consider the subsequence b(k) such that a(b(k))=1. Then 3k - b(k) = A063787(k+1) and b(k) = 1 + A004134(k-1).
From Sam Alexander, Nov 27 2010: (Start)
A naive way to try and guess whether a sequence is periodic, based on its first k terms (n1, ..., nk), is to look at all sequences which have period less than k, and guess "periodic" if any of them extend (n1, ..., nk), "nonperiodic" otherwise.
a(1)=1, a(2)=2. Suppose a(1), ..., a(n) have been defined, n > 1.
1. If the above guessing method guesses that (a(1), ..., a(n)) is an initial segment of a periodic sequence, then let a(n+1) be the least nonzero number not appearing in (a(1), ..., a(n)).
2. Otherwise, let (a(n+1), ..., a(2n)) be a copy of (a(1), ..., a(n)).
This sequence thwarts the guessing attempt, tricking the guesser into changing his mind infinitely many times as n->infinity. (End)
As n increases, the average value of the first n terms approaches 7/3 = 2.333... - Maxim Skorohodov, Dec 15 2022

Examples

			To construct the sequence: start with (1, 2); concatenating those 2 terms gives (1,2,1,2). Appending 3 gives the first 5 terms: (1,2,1,2,3). Concatenating those 5 terms gives (1,2,1,2,3,1,2,1,2,3). Appending 4 gives the first 11 terms: (1,2,1,2,3,1,2,1,2,3,4), etc.
		

Crossrefs

Cf. A082692 (partial sums), A182659, A182660 (other sequences engineered to spite naive guessers).

A061161 Numerators in expansion of Euler transform of b(n) = 1/4.

Original entry on oeis.org

1, 1, 13, 55, 1235, 4615, 55801, 200343, 8977475, 36804235, 367235363, 1444888289, 32062742231, 120729974115, 1205864254225, 5201022002071, 395884671433315, 1603069490974835, 15989295873680415, 64312573140322525, 1250332447587844829, 5262481040435242585
Offset: 0

Views

Author

Vladeta Jovovic, Apr 17 2001

Keywords

Comments

Denominators of c(n) are 2^A004134(n).

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
          d/4, d=numtheory[divisors](j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 28 2017
  • Mathematica
    c[n_] := c[n] = If[n == 0, 1,
         (1/(4n)) Sum[c[n-k] DivisorSigma[1, k], {k, 1, n}]];
    a[n_] := Numerator[c[n]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 24 2022 *)

Formula

Numerators of c(n), where c(n) = (1/(4*n))*Sum_{k=1..n} c(n-k)*sigma(k), n>0, c(0)=1.

A101190 G.f.: A(x) = Sum_{n>=0} a(n)/2^A005187(n) * x^n = lim_{n->oo} F(n)^(1/2^n) where F(n) is defined by F(n) = F(n-1)^2 + x^(2^n-1) for n >= 1 with F(0) = 1.

Original entry on oeis.org

1, 1, -1, 5, -53, 127, -677, 2221, -61133, 205563, -1394207, 4852339, -68586849, 243751723, -1741612525, 6265913725, -363239625661, 1323861506899, -9699189175227, 35700526467479, -527987675255931, 1960112858076289, -14606721595781139, 54604708004873403
Offset: 0

Views

Author

Paul D. Hanna, Dec 03 2004

Keywords

Examples

			G.f.: A(x) = 1 + 1/2*x - 1/8*x^2 + 5/16*x^3 - 53/128*x^4 + 127/256*x^5 - 677/1024*x^6 + 2221/2048*x^7 + ... + a(n)/2^A005187(n)*x^n + ...
where 2^A005187(n) is also the denominator of [x^n] 1/sqrt(1-x).
GENERATING METHOD.
We can illustrate the generating method for g.f. A(x) as follows.
Given F(n) = F(n-1)^2 + (2*x)^(2^n-1) for n >= 1 with F(0) = 1,
the first few polynomials generated by F(n) begin
F(0) = 1,
F(1) = F(0)^2 + x^(2^1-1) = 1 + x,
F(2) = F(1)^2 + x^(2^2-1) = 1 + 2*x + x^2 + x^3,
F(3) = F(2)^2 + x^(2^3-1) = 1 + 4*x + 6*x^2 + 6*x^3 + 5*x^4 + 2*x^5 + x^6 + x^7.
...
The 2^n-th roots of F(n) tend to the limit of the g.f.:
F(1)^(1/2^1) = 1 + 1/2*x - 1/8*x^2 + 1/16*x^3 - 5/128*x^4 + 7/256*x^5 - 21/1024*x^6 + 33/2048*x^7 - 429/32768*x^8 + ...
F(2)^(1/2^2) = 1 + 1/2*x - 1/8*x^2 + 5/16*x^3 - 53/128*x^4 + 127/256*x^5 - 677/1024*x^6 + 1965/2048*x^7 - 46797/32768*x^8 + ...
F(3)^(1/2^3) = 1 + 1/2*x - 1/8*x^2 + 5/16*x^3 - 53/128*x^4 + 127/256*x^5 - 677/1024*x^6 + 2221/2048*x^7 - 61133/32768*x^8 + ...
...
The limit of this process equals the g.f. A(x) of this sequence.
Note: the sum of the coefficients in F(n) equals A003095(n):
1, 2 = 1 + 1, 5 = 1 + 2 + 1 + 1, 26 = 1 + 4 + 6 + 6 + 5 + 2 + 1 + 1, ...
The last n coefficients in F(n) read backwards are Catalan numbers (A000108).
POWERS OF A(x).
The coefficients of x^k in the 2^n powers of the g.f. A(x) begin:
A^(2^0) = [1, 1/2, -1/8, 5/16, -53/128, 127/256, -677/1024, 2221/2048, ...],
A^(2^1) = [1, 1, 0, 1/2, -1/2, 1/2, -5/8, 9/8, -2, 53/16, -89/16, 155/16, ...],
A^(2^2) = [1, 2, 1, 1, 0, 0, 0, 1/2, -1, 3/2, -5/2, 9/2, -8, 14, -197/8, 44, ...],
A^(2^3) = [1, 4, 6, 6, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1/2, -2, 5, ...],
A^(2^4) = [1, 8, 28, 60, 94, 116, 114, 94, 69, 44, 26, 14, 5, 2, 1, 1, 0, 0, ...].
		

Crossrefs

Programs

  • PARI
    {a(n) = my(F=1,A,L); if(n==0,A=1,L=ceil(log(n+1)/log(2)); for(k=1,L, F = F^2 + x^(2^k-1) +x*O(x^n)); A = polcoeff(F^(1/2^L),n)); numerator(A)}
    for(n=0,32, print1(a(n),", "))

Formula

G.f. A(x) = ( Sum_{n>=0} A101191(n)/2^A004134(n) * x^n )^2.
G.f. A(x) satisfies A(2*x)^2 = Sum_{n>=0} A101189(n)*(2*x)^n.

Extensions

Entry revised by Paul D. Hanna, Mar 05 2024

A272666 a(n) = A011371(n) + 5*n.

Original entry on oeis.org

0, 5, 11, 16, 23, 28, 34, 39, 47, 52, 58, 63, 70, 75, 81, 86, 95, 100, 106, 111, 118, 123, 129, 134, 142, 147, 153, 158, 165, 170, 176, 181, 191, 196, 202, 207, 214, 219, 225, 230, 238, 243, 249, 254, 261, 266, 272, 277, 286, 291, 297, 302, 309, 314, 320, 325, 333, 338, 344, 349, 356, 361, 367, 372
Offset: 0

Views

Author

N. J. A. Sloane, May 18 2016

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 6*n - DigitCount[n, 2, 1]; Array[a, 100, 0] (* Amiram Eldar, Jul 20 2023 *)
  • PARI
    a(n) = 6*n - hammingweight(n); \\ Michel Marcus, Sep 28 2017

Formula

a(n) = A008588(n) - A000120(n). - Michel Marcus, Sep 28 2017
Showing 1-10 of 10 results.