cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A093544 Numerator of (4*n-3)/A000265(n). Numerator of pairwise quotients of A004130.

Original entry on oeis.org

1, 5, 3, 13, 17, 7, 25, 29, 11, 37, 41, 15, 49, 53, 19, 61, 65, 23, 73, 77, 27, 85, 89, 31, 97, 101, 35, 109, 113, 39, 121, 125, 43, 133, 137, 47, 145, 149, 51, 157, 161, 55, 169, 173, 59, 181, 185, 63, 193, 197, 67, 205, 209, 71, 217, 221, 75, 229, 233, 79, 241
Offset: 1

Views

Author

Ralf Stephan, Mar 31 2004

Keywords

Comments

Terms are a rearrangement of the odd numbers not of form 12*k+9.
Also given by the following linear quasi-polynomial mod 3: (4 n - 3) If[Mod[n, 3] == 0, 1/3, 1]. - Eric Rowland, Feb 24 2009

Programs

  • Mathematica
    Table[(4 n - 3) If[Mod[n, 3] == 0, 1/3, 1], {n, 61}] (* Eric Rowland, Feb 24 2009 *)
  • PARI
    a(n)=numerator((4*n-3)/n*2^valuation(n,2))

A123854 Denominators in an asymptotic expansion for the cubic recurrence sequence A123851.

Original entry on oeis.org

1, 4, 32, 128, 2048, 8192, 65536, 262144, 8388608, 33554432, 268435456, 1073741824, 17179869184, 68719476736, 549755813888, 2199023255552, 140737488355328, 562949953421312, 4503599627370496, 18014398509481984, 288230376151711744, 1152921504606846976
Offset: 0

Views

Author

Keywords

Comments

A cubic analog of the asymptotic expansion A116603 of Somos's quadratic recurrence sequence A052129. Numerators are A123853.
Equals 2^A004134(n); also the denominators in expansion of (1-x)^(-1/4). - Alexander Adamchuk, Oct 27 2006
All terms are powers of 2 and log_2 a(n) = A004134(n) = 3*n - A000120(n). - Alexander Adamchuk, Oct 27 2006 [Edited by Petros Hadjicostas, May 14 2020]
Is this the same sequence as A088802? - N. J. A. Sloane, Mar 21 2007
Almost certainly this is the same as A088802. - Michael Somos, Aug 23 2007
Denominators of Gegenbauer_C(2n,1/4,2). The denominators of Gegenbauer_C(n,1/4,2) give the doubled sequence. - Paul Barry, Apr 21 2009
If the Greubel formula in A088802 and the Luschny formula here are correct (they are the same), the sequence is a duplicate of A088802. - R. J. Mathar, Aug 02 2023

Examples

			A123851(n) ~ c^(3^n)*n^(- 1/2)/(1 + 3/(4*n) - 15/(32*n^2) + 113/(128*n^3) - 5397/(2048*n^4) + ...) where c = 1.1563626843322... is the cubic recurrence constant A123852.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.

Crossrefs

Programs

  • Maple
    f:=proc(t,x) exp(sum(ln(1+m*x)/t^m,m=1..infinity)); end; for j from 0 to 29 do denom(coeff(series(f(3,x),x=0,30),x,j)); od;
    # Alternatively:
    A123854 := n -> denom(binomial(1/4,n)):
    seq(A123854(n), n=0..25); # Peter Luschny, Apr 07 2016
  • Mathematica
    Denominator[CoefficientList[Series[ 1/Sqrt[Sqrt[1-x]], {x, 0, 25}], x]] (* Robert G. Wilson v, Mar 23 2014 *)
  • PARI
    vector(25, n, n--; denominator(binomial(1/4,n)) ) \\ G. C. Greubel, Aug 08 2019
  • Sage
    # uses[A000120]
    def A123854(n): return 1 << (3*n-A000120(n))
    [A123854(n) for n in (0..25)]  # Peter Luschny, Dec 02 2012
    

Formula

From Alexander Adamchuk, Oct 27 2006: (Start)
a(n) = 2^A004134(n).
a(n) = 2^(3n - A000120(n)). (End)
a(n) = denominator(binomial(1/4,n)). - Peter Luschny, Apr 07 2016

A004134 Denominators in expansion of (1-x)^{-1/4} are 2^a(n).

Original entry on oeis.org

0, 2, 5, 7, 11, 13, 16, 18, 23, 25, 28, 30, 34, 36, 39, 41, 47, 49, 52, 54, 58, 60, 63, 65, 70, 72, 75, 77, 81, 83, 86, 88, 95, 97, 100, 102, 106, 108, 111, 113, 118, 120, 123, 125, 129, 131, 134, 136, 142, 144, 147, 149, 153, 155, 158, 160, 165, 167, 170, 172, 176, 178
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A004130.
Cf. A005187.

Programs

  • Mathematica
    Log2[ Denominator[ CoefficientList[ Series[ 1/Sqrt[Sqrt[1 - x]], {x, 0, 61}], x]]] (* Robert G. Wilson v, Mar 23 2014 *)
    f[n_] := 3 n - DigitCount[n, 2, 1]; Array[f, 62, 0] (* or *)
    a[n_] := If[ OddQ@ n, a[(n - 1)/2] + 3 (n - 1)/2 + 2, a[n/2] + 3 n/2]; a[0] = 0; Array[a, 62, 0] (* Robert G. Wilson v, Mar 23 2014 *)
  • PARI
    {a(n) = if( n<0, 0, 3*n - subst( Pol( binary( n ) ), x, 1) ) } /* Michael Somos, Aug 23 2007 */
    
  • PARI
    a(n) = 3*n - hammingweight(n); \\ Joerg Arndt, Mar 23 2014

Formula

a(n) = 3*n - A000120(n). Recurrence: a(2n) = a(n) + 3n, a(2n+1) = a(n) + 3n + 2. Proved by Mitch Harris, following a conjecture by Ralf Stephan.
a(n) = A005187(n) + n. - Cyril Damamme, Aug 04 2015

A364660 Numerators of coefficients in expansion of (1 + x)^(1/4).

Original entry on oeis.org

1, 1, -3, 7, -77, 231, -1463, 4807, -129789, 447051, -3129357, 11094993, -159028233, 574948227, -4188908511, 15359331207, -906200541213, 3358272593907, -25000473754641, 93422822977869, -1401342344668035, 5271716439465465, -39777496770512145, 150462705175415505, -4564035390320936985
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2023

Keywords

Examples

			(1 + x)^(1/4) = 1 + x/4 - 3*x^2/32 + 7*x^3/128 - 77*x^4/2048 + 231*x^5/8192 - 1463*x^6/65536 + ...
Coefficients are 1, 1/4, -3/32, 7/128, -77/2048, 231/8192, -1463/65536, ...
		

Crossrefs

Denominators are A088802, A123854.

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[(1 + x)^(1/4), {x, 0, nmax}], x] // Numerator
    Table[Binomial[1/4, n], {n, 0, 24}] // Numerator
  • PARI
    my(x='x+O('x^30)); apply(numerator, Vec((1 + x)^(1/4))) \\ Michel Marcus, Aug 02 2023

A181161 Numerator in abs(binomial(-1/8,n)).

Original entry on oeis.org

1, 1, 9, 51, 1275, 8415, 115005, 805035, 45886995, 331406075, 4838528695, 35629165845, 1056998586735, 7886835608715, 118302534130725, 891212423784795, 107836703277960195, 818290277815109715
Offset: 0

Views

Author

Emanuele Munarini, Jan 25 2011

Keywords

Crossrefs

Programs

  • Mathematica
    w[n_] := Numerator[Binomial[-1/8, n] (-1)^n];
    Table[w[n], {n, 0, 12}]

Formula

a(n) = 2^(e_2((2*n)!)-n)/n! * Product[8k+1,{k,0,n-1}] where e_2((2n)!) is the highest power of 2 that divides (2*n)! (sequence A005187)
Showing 1-5 of 5 results.