A055938 Integers not generated by b(n) = b(floor(n/2)) + n (complement of A005187).
2, 5, 6, 9, 12, 13, 14, 17, 20, 21, 24, 27, 28, 29, 30, 33, 36, 37, 40, 43, 44, 45, 48, 51, 52, 55, 58, 59, 60, 61, 62, 65, 68, 69, 72, 75, 76, 77, 80, 83, 84, 87, 90, 91, 92, 93, 96, 99, 100, 103, 106, 107, 108, 111, 114, 115, 118, 121, 122, 123, 124, 125, 126, 129
Offset: 1
Examples
Since A005187 begins 0 1 3 4 7 8 10 11 15 16 18 19 22 23 25 26 31... this sequence begins 2 5 6 9 12 13 14 17 20 21
Links
Crossrefs
Row 1 of arrays A257264, A256997 and also of A255557 (when prepended with 1). Equally: column 1 of A256995 and A255555.
Gives positions of zeros in A213714, A213723, A213724, A213731, A257265, positions of ones in A213725-A213727 and A256989, positions of nonzeros in A254110.
Cf. also A010061 (integers that are not a sum of distinct integers of the form 2^k+1).
Programs
-
Haskell
a055938 n = a055938_list !! (n-1) a055938_list = concat $ zipWith (\u v -> [u+1..v-1]) a005187_list $ tail a005187_list -- Reinhard Zumkeller, Nov 07 2011
-
Mathematica
a[0] = 0; a[1] = 1; a[n_Integer] := a[Floor[n/2]] + n; b = {}; Do[ b = Append[b, a[n]], {n, 0, 105}]; c =Table[n, {n, 0, 200}]; Complement[c, b] (* Second program: *) t = Table[IntegerExponent[(2n)!, 2], {n, 0, 100}]; Complement[Range[t // Last], t] (* Jean-François Alcover, Nov 15 2016 *)
-
PARI
L=listcreate();for(n=1,1000,for(k=2*n-hammingweight(n)+1,2*n+1-hammingweight(n+1),listput(L,k)));Vec(L) \\ Ralf Stephan, Dec 27 2013
-
Python
def a053644(n): return 0 if n==0 else 2**(len(bin(n)[2:]) - 1) def a043545(n): x=bin(n)[2:] return int(max(x)) - int(min(x)) def a079559(n): return 1 if n==0 else a043545(n + 1)*a079559(n + 1 - a053644(n + 1)) print([n for n in range(1, 201) if a079559(n)==0]) # Indranil Ghosh, Jun 11 2017, after the comment by Reinhard Zumkeller
-
Scheme
;; utilizing COMPLEMENT-macro from Antti Karttunen's IntSeq-library) (define A055938 (COMPLEMENT 1 A005187)) ;; Antti Karttunen, Aug 08 2015
Formula
From Antti Karttunen, Aug 08 2015: (Start)
Other identities. For all n >= 1:
A234017(a(n)) = n.
A256992(a(n)) = n.
(End)
Extensions
More terms from Robert G. Wilson v, Jul 24 2000
Comments