cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A101926 a(n) = 2^A101925(n).

Original entry on oeis.org

2, 4, 16, 32, 256, 512, 2048, 4096, 65536, 131072, 524288, 1048576, 8388608, 16777216, 67108864, 134217728, 4294967296, 8589934592, 34359738368, 68719476736, 549755813888, 1099511627776, 4398046511104, 8796093022208
Offset: 0

Views

Author

Ralf Stephan, Dec 28 2004

Keywords

Comments

a(n) is the numerator of 2^(2*n+1)*(n!)^2/(2*n+1)/(2*n)!. The corresponding denominator is A001803. - Daniel Suteu, Feb 03 2017
a(n) is the numerator of Integral_{x=-oo..oo} sech(x)^(2*n+2) dx. The corresponding denominator is A001803(n). - Mohammed Yaseen, Jul 25 2023
a(n) is the denominator of (1/Pi) * Integral_{x=0..Pi/2} sin(x)^(2*n) dx. The corresponding numerator is A001790(n). - Mohammed Yaseen, Sep 19 2023
a(n) = numerator(Pi*binomial(n, -1/2)). - Peter Luschny, Dec 05 2024

Crossrefs

Bisection of A036069 and of A086117.

Programs

  • Maple
    denom((binomial(2n,n)*4^-n)/2); # Stephen Crowley, Mar 05 2007
  • Mathematica
    Table[Numerator[Beta[1, n + 1, 1/2]], {n, 0, 22}] (* Gerry Martens, Nov 13 2016 *)

Extensions

More terms from Joshua Zucker, May 15 2006

A048881 a(n) = A000120(n+1) - 1 = wt(n+1) - 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 3, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3
Offset: 0

Views

Author

Keywords

Comments

Highest power of 2 dividing n-th Catalan number (A000108).
a(n) = 0 iff n = 2^k - 1, k=0,1,...
Appears to be number of binary left-rotations (iterations of A006257) to reach fixed point of form 2^k-1. Right-rotation analog is A063250. This would imply that for n >= 0, a(n)=f(n), recursively defined to be 0 for n=0, otherwise as f( ( (1-n)(1-p)(1-s) - (1-n-p-s) ) / 2) + p (s+1) / 2, where p = n mod 2 and s = - signum(n) (f(n<0) is A000120(-n)). - Marc LeBrun, Jul 11 2001
Let f(0) = 01, f(1) = 12, f(2) = 23, f(3) = 34, f(4) = 45, etc. Sequence gives concatenation of 0, f(0), f(f(0)), f(f(f(0))), ... Also f(f(...f(0)...)) converges to A000120. - Philippe Deléham, Aug 14 2003
C(n, k) is the number of occurrence of k in the n-th group of terms in this sequence read by rows: {0}; {0, 1}; {0, 1, 1, 2}; {0, 1, 1, 2, 1, 2, 2, 3}; {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 }; ... - Philippe Deléham, Jan 01 2004
Highest power of 2 dividing binomial(n,floor(n/2)). - Benoit Cloitre, Oct 20 2003
2^a(n) are numerators in the Maclaurin series for (sin x)^2. - Jacob A. Siehler, Nov 11 2009
Conjecture: a(n) is the sum of digits of the n-th word in A076478, for n >= 1; has been confirmed for n up to 20000. - Clark Kimberling, Jul 14 2021

Examples

			From _Omar E. Pol_, Mar 08 2011: (Start)
Sequence can be written in the following form (irregular triangle):
  0,
  0,1,
  0,1,1,2,
  0,1,1,2,1,2,2,3,
  0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,
  0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
  ...
Row sums are A001787.
(End)
		

Crossrefs

First differences of A078903.

Programs

  • Haskell
    a048881 n = a048881_list !! n
    a048881_list = c [0] where c (x:xs) = x : c (xs ++ [x,x+1])
    -- Reinhard Zumkeller, Mar 07 2011
    (Python 3.10+)
    def A048881(n): return (n+1).bit_count()-1 # Chai Wah Wu, Nov 15 2022
  • Maple
    A048881 := proc(n)
        A000120(n+1)-1 ;
    end proc:
    seq(A048881(n),n=0..200) ; # R. J. Mathar, Mar 12 2018
  • Mathematica
    a[n_] := IntegerExponent[ CatalanNumber[n], 2]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Jun 21 2013 *)
  • PARI
    { a(n) = if( n<0, 0, n++; n /= 2^valuation(n,2); subst( Pol( binary( n ) ), x, 1) - 1 ) } /* Michael Somos, Aug 23 2007 */
    
  • PARI
    {a(n) = if( n<0, 0, valuation( (2*n)! / n! / (n+1)!, 2 ) ) } /* Michael Somos, Aug 23 2007 */
    
  • PARI
    a(n) = hammingweight(n+1) - 1; \\ Michel Marcus, Nov 15 2022
    

Formula

Writing n as 2^m+k with -1 <= k < 2^m-1, then a(n) = A000120(k+1). - Henry Bottomley, Mar 28 2000
a(n) = k if 2^k divides A000108(n) but 2^(k+1) does not divide A000108(n).
a(2*n) = a(n-1)+1, a(2*n+1) = a(n). - Vladeta Jovovic, Oct 10 2002
G.f.: (1/(x-x^2)) * (x^2/(1-x) - Sum_{k>=1} x^(2^k)/(1-x^(2^k))). - Ralf Stephan, Apr 13 2002
a(n) = A000120(A129760(n+1)). - Reinhard Zumkeller, Jun 30 2010
a(n+k) = A240857(n,k), 0 <= k <= n; in particular: a(n) = A240857(n,0). - Reinhard Zumkeller, Apr 14 2014
a(n) = (n+1)*2 - A101925(n+1). - Gleb Ivanov, Jan 12 2022

Extensions

Entry revised by N. J. A. Sloane, Jun 07 2009

A046699 a(1) = a(2) = 1, a(n) = a(n - a(n-1)) + a(n-1 - a(n-2)) if n > 2.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 6, 7, 8, 8, 8, 8, 9, 10, 10, 11, 12, 12, 12, 13, 14, 14, 15, 16, 16, 16, 16, 16, 17, 18, 18, 19, 20, 20, 20, 21, 22, 22, 23, 24, 24, 24, 24, 25, 26, 26, 27, 28, 28, 28, 29, 30, 30, 31, 32, 32, 32, 32, 32, 32, 33, 34, 34, 35, 36, 36, 36, 37
Offset: 1

Views

Author

Keywords

Comments

Ignoring first term, this is the meta-Fibonacci sequence for s=0. - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)
Except for the first term, n occurs A001511(n) times. - Franklin T. Adams-Watters, Oct 22 2006

References

  • Sequence was proposed by Reg Allenby.
  • B. W. Conolly, "Meta-Fibonacci sequences," in S. Vajda, editor, Fibonacci and Lucas Numbers and the Golden Section. Halstead Press, NY, 1989, pp. 127-138. See Eq. (2).
  • Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 5, 1990, pp. 212-213, 1993.
  • S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Wiley, 1989, see p. 129.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 129.

Crossrefs

Callaghan et al. (2005)'s sequences T_{0,k}(n) for k=1 through 7 are A000012, A046699, A046702, A240835, A241154, A241155, A240830.

Programs

  • Haskell
    a046699 n = a046699_list !! (n-1)
    a046699_list = 1 : 1 : zipWith (+) zs (tail zs) where
       zs = map a046699 $ zipWith (-) [2..] a046699_list
    -- Reinhard Zumkeller, Jan 02 2012
    
  • Magma
    [ n le 2 select 1 else Self(n - Self(n-1)) + Self(n-1 -Self(n-2)):n in [1..80]]; // Marius A. Burtea, Oct 17 2019
  • Maple
    a := proc(n) option remember; if n <= 1 then return 1 end if; if n <= 2 then return 2 end if; return add(a(n - i + 1 - a(n - i)), i = 1 .. 2) end proc # Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)
    a := proc(n) option remember; if n <= 2 then 1 else a(n - a(n-1)) + a(n-1 - a(n-2)); fi; end; # N. J. A. Sloane, Apr 16 2014
  • Mathematica
    a[n_] := (k = 1; While[ !Divisible[(2*++k)!, 2^(n-1)]]; k); a[1] = a[2] = 1; Table[a[n], {n, 1, 72}] (* Jean-François Alcover, Oct 06 2011, after Benoit Cloitre *)
    CoefficientList[ Series[1 + x/(1 - x)*Product[1 + x^(2^n - 1), {n, 6}], {x, 0, 80}], x] (* or *)
    a[1] = a[2] = 1; a[n_] := a[n] = a[n - a[n - 1]] + a[n - 1 - a[n - 2]]; Array[a, 80] (* Robert G. Wilson v, Sep 08 2014 *)
  • Maxima
    a[1]:1$
    a[2]:1$
    a[n]:=a[n-a[n-1]]+a[n-1-a[n-2]]$
    makelist(a[n],n,2,60); /* Martin Ettl, Oct 29 2012 */
    
  • PARI
    a(n)=if(n<0,1,s=1;while((2*s)!%2^(n-1)>0,s++);s) \\ Benoit Cloitre, Jan 19 2007
    
  • Python
    from sympy import factorial
    def a(n):
        if n<3: return 1
        s=1
        while factorial(2*s)%(2**(n - 1))>0: s+=1
        return s
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 11 2017, after Benoit Cloitre
    

Formula

First differences seem to be A079559. - Vladeta Jovovic, Nov 30 2003. This is correct and not too hard to prove, giving the generating function x + x^2(1+x)(1+x^3)(1+x^7)(1+x^15).../(1-x). - Paul Boddington, Jul 30 2004
G.f.: x + x^2/(1-x) * Product_{n=1}^{infinity} (1 + x^(2^n-1)). - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)
For n>=1, a(n)=w(n-1) where w(n) is the least k such that 2^n divides (2k)!. - Benoit Cloitre, Jan 19 2007
Conjecture: a(n+1) = a(n) + A215530(a(n) + n) for all n > 0. - Velin Yanev, Oct 17 2019
From Bernard Schott, Dec 03 2021: (Start)
a(n) <= a(n+1) <= a(n) +1.
For n > 1, if a(n) is odd, then a(n+1) = a(n) + 1.
a(2^n+1) = 2^(n-1) + 1 for n > 0.
Results coming from the 5th problem proposed during the 22nd Canadian Mathematical Olympiad in 1990 (link IMO Compendium and Doob reference). (End)

A082850 Let S(0) = {}, S(n) = {S(n-1), S(n-1), n}; sequence gives S(infinity).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 5, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 5, 6, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 5, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2003

Keywords

Comments

Sequence counts up to successive values of A001511; i.e., apply the morphism k -> 1,2,...,k to A001511. If all 1's are removed from the sequence, the resulting sequence b has b(n) = a(n)+1. A101925 lists the positions of 1's in this sequence.
The geometric mean of this sequence approaches the Somos constant (A112302). - Jwalin Bhatt, Jan 30 2025

Examples

			S(1) = {1}, S(2) = {1,1,2}, S(3) = {1,1,2,1,1,2,3}, etc.
		

Crossrefs

Cf. A082851 (partial sums).
Cf. A215020.

Programs

  • Mathematica
    Fold[Flatten[{#1, #1, #2}] &, {}, Range[5]] (* Birkas Gyorgy, Apr 13 2011 *)
    Flatten[Table[Length@Last@Split@IntegerDigits[2 n, 2], {n, 20}] /. {n_ ->Range[n]}] (* Birkas Gyorgy, Apr 13 2011 *)
  • Python
    S = []; [S.extend(S + [n]) for n in range(1, 8)]
    print(S) # Michael S. Branicky, Jul 02 2022
    
  • Python
    from itertools import count, islice
    def A082850_gen(): # generator of terms
        S = []
        for n in count(1):
            yield from (m:=S+[n])
            S += m #
    A082850_list = list(islice(A082850_gen(),20)) # Chai Wah Wu, Mar 06 2023

Formula

a(2^m - 1) = m.
If n = 2^m - 1 + k with 0 < k < 2^m, then a(n) = a(k). - Franklin T. Adams-Watters, Aug 16 2006
a(n) = log_2(A182105(n)) + 1. - Laurent Orseau, Jun 18 2019
a(n) = 1 + A215020(n). - Joerg Arndt, Mar 04 2025

A364675 Number of integer partitions of n whose nonzero first differences are a submultiset of the parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 7, 7, 10, 12, 15, 15, 26, 25, 35, 45, 55, 60, 86, 94, 126, 150, 186, 216, 288, 328, 407, 493, 610, 699, 896, 1030, 1269, 1500, 1816, 2130, 2620, 3029, 3654, 4300, 5165, 5984, 7222, 8368, 9976, 11637, 13771, 15960, 18978, 21896, 25815, 29915
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2023

Keywords

Comments

Conjecture: For subsets of {1..n} instead of partitions of n we have A101925.
Conjecture: The strict version is A154402.

Examples

			The partition y = (3,2,1,1) has first differences (1,1,0), and (1,1) is a submultiset of y, so y is counted under a(7).
The a(1) = 1 through a(8) = 10 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (221)    (33)      (421)      (44)
             (111)  (211)   (2111)   (42)      (2221)     (422)
                    (1111)  (11111)  (222)     (3211)     (2222)
                                     (2211)    (22111)    (4211)
                                     (21111)   (211111)   (22211)
                                     (111111)  (1111111)  (32111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For subsets of {1..n} we appear to have A101925, A364671, A364672.
The strict case (no differences of 0) appears to be A154402.
Starting with the distinct parts gives A342337.
For disjoint multisets: A363260, subsets A364463, strict A364464.
For overlapping multisets: A364467, ranks A364537, strict A364536.
For subsets instead of submultisets we have A364673.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A236912 counts sum-free partitions, complement A237113.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    submultQ[cap_,fat_] := And@@Function[i,Count[fat,i] >= Count[cap,i]] /@ Union[List@@cap];
    Table[Length[Select[IntegerPartitions[n], submultQ[Differences[Union[#]],#]&]], {n,0,30}]

A113474 a(n) = a(floor(n/2)) + floor(n/2) with a(1) = 1.

Original entry on oeis.org

1, 2, 2, 4, 4, 5, 5, 8, 8, 9, 9, 11, 11, 12, 12, 16, 16, 17, 17, 19, 19, 20, 20, 23, 23, 24, 24, 26, 26, 27, 27, 32, 32, 33, 33, 35, 35, 36, 36, 39, 39, 40, 40, 42, 42, 43, 43, 47, 47, 48, 48, 50, 50, 51, 51, 54, 54, 55, 55, 57, 57, 58, 58, 64, 64, 65, 65, 67, 67, 68, 68, 71, 71
Offset: 1

Views

Author

Zak Seidov, Jan 08 2006

Keywords

Comments

a(2^n) = 2^n, in other cases a(n) < n. Except for the initial 1 all entries are repeated. Apparently no simple formula is known for a(n).
Taking every other term seems to give A101925. - Dominick Cancilla, Aug 03 2010
1/a(n) is the probability that a randomly chosen divisor of n! is odd. This is because the product n! contains the prime factor 2 a total of a(n) - 1 times (cf. A011371) and thus the prime factor 2 can occur in a divisor of n! a total of a(n) times, ranging between 0 and a(n) - 1 times. - Martin Renner, Dec 28 2022

Crossrefs

Programs

Formula

From Paul Barry, Aug 27 2006: (Start)
a(n) = ( Sum_{k=0..n} floor(n/2^k) ) - n + 1.
a(n) = 2 + Sum_{k=0..n} ( floor(n/2^k)-1 ).
a(n) = A005187(n) - n + 1. (End)
a(n) = n + O(log n). - Charles R Greathouse IV, Mar 12 2017
a(n) = A011371(n) + 1 for n > 0. - Martin Renner, Dec 28 2022

A077070 Triangle read by rows: T(n,k) is the power of 2 in denominator of coefficients of Legendre polynomials, where n >= 0 and 0 <= k <= n.

Original entry on oeis.org

0, 1, 1, 3, 2, 3, 4, 4, 4, 4, 7, 5, 6, 5, 7, 8, 8, 7, 7, 8, 8, 10, 9, 10, 8, 10, 9, 10, 11, 11, 11, 11, 11, 11, 11, 11, 15, 12, 13, 12, 14, 12, 13, 12, 15, 16, 16, 14, 14, 15, 15, 14, 14, 16, 16, 18, 17, 18, 15, 17, 16, 17, 15, 18, 17, 18, 19, 19, 19, 19, 18, 18, 18, 18, 19, 19, 19, 19, 22, 20, 21, 20, 22, 19, 20, 19, 22, 20, 21, 20, 22
Offset: 0

Views

Author

Michael Somos, Oct 25 2002

Keywords

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
   0;
   1,  1;
   3,  2,  3;
   4,  4,  4,  4;
   7,  5,  6,  5,  7;
   8,  8,  7,  7,  8,  8;
  10,  9, 10,  8, 10,  9, 10;
  ...
		

Crossrefs

Cf. A005187 (column k=0), A101925 (column k=1), A077071 (row sums), A144816 (denominators).

Programs

  • Maple
    T:= n-> (p-> seq(padic[ordp](denom(coeff(p, x, i)), 2)
                 , i=0..2*n, 2))(orthopoly[P](2*n, x)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Jan 25 2022
  • Mathematica
    T[n_, k_] := IntegerExponent[Denominator[Coefficient[LegendreP[2n, x], x, 2k]], 2]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 28 2017 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, -valuation( polcoeff( pollegendre(2*n), 2*k), 2))}
    
  • PARI
    T(n,k) = 2*n - hammingweight(n-k) - hammingweight(k); \\ Kevin Ryde, Jan 29 2022

Formula

T(n, k) = A007814(A144816(n, k)). - Michel Marcus, Jan 29 2022
T(n, k) = 2*n - wt(n-k) - wt(k) where wt = A000120 is the binary weight. - Kevin Ryde, Jan 29 2022

A118319 a(n) = (highest power of 2 dividing n)th integer among those positive integers not occurring in {a(1),a(2),a(3),...,a(n-1)}.

Original entry on oeis.org

1, 3, 2, 7, 4, 6, 5, 15, 8, 10, 9, 14, 11, 13, 12, 31, 16, 18, 17, 22, 19, 21, 20, 30, 23, 25, 24, 29, 26, 28, 27, 63, 32, 34, 33, 38, 35, 37, 36, 46, 39, 41, 40, 45, 42, 44, 43, 62, 47, 49, 48, 53, 50, 52, 51, 61, 54, 56, 55, 60, 57, 59, 58, 127, 64, 66, 65, 70, 67, 69, 68, 78
Offset: 1

Views

Author

Leroy Quet, Apr 23 2006

Keywords

Comments

Sequence is a permutation of the positive integers. a(2n-1) is the smallest positive integer not occurring earlier in the sequence.
A101925 is the odd bisection, and it seems that A045412 is the sorted even bisection: a(2*n) = A045412(a(n)). - Andrey Zabolotskiy, Oct 09 2019

Examples

			4 is the highest power of 2 dividing 12. Those positive integers not occurring among the first 11 terms of the sequence form the sequence 11, 12, 13, 14, 16,... Now 14 is the 4th of these integers, so a(12) = 14.
		

Crossrefs

Cf. A108918 (inverse permutation), A000120, A006519, A045412, A101925.

Programs

  • Maple
    A118319 := proc(nmin) local a,anxt,i,n ; a := [1] ; while nops(a) < nmin do n := nops(a)+1 ; i := 2^A007814(n); anxt := 0 ; while i > 0 do anxt := anxt+1 ; while anxt in a do anxt := anxt+1 ; od ; i := i-1; od ; a := [op(a),anxt] ; od; a ; end: A118319(80) ; # R. J. Mathar, Sep 06 2007
    a := n -> n + 2^padic[ordp](n, 2) - add(convert(n, base, 2)): seq(a(n), n = 1..72); # Peter Luschny, Mar 08 2025
  • Mathematica
    a[1] := 1; a[n_] := a[n] =  Part[ Complement[ Range[2 n], Table[a[i], {i, n - 1}]],  2^IntegerExponent[n, 2]]; Array[a, 100] (* Birkas Gyorgy, Jul 09 2012 *)
  • PARI
    a(n) = n + 1<Kevin Ryde, Mar 02 2025

Formula

a(2^m) = 2^(m+1) - 1; a(2^m+k) = a(k) + 2^m - 1 for 0 < k < 2^m. - Andrey Zabolotskiy, Oct 10 2019
a(n) = n + A006519(n) - A000120(n). - Kevin Ryde, Mar 08 2025

Extensions

More terms from R. J. Mathar, Sep 06 2007

A144816 Denominators of triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the coefficient of x^(2*k+1) in polynomial t_n(x), used to define continuous and n times differentiable sigmoidal transfer functions.

Original entry on oeis.org

1, 2, 2, 8, 4, 8, 16, 16, 16, 16, 128, 32, 64, 32, 128, 256, 256, 128, 128, 256, 256, 1024, 512, 1024, 256, 1024, 512, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 32768, 4096, 8192, 4096, 16384, 4096, 8192, 4096, 32768, 65536, 65536, 16384, 16384, 32768, 32768, 16384, 16384, 65536, 65536
Offset: 0

Views

Author

Alois P. Heinz, Sep 21 2008

Keywords

Examples

			Triangle begins:
    1;
    2,  2;
    8,  4,  8;
   16, 16, 16, 16;
  128, 32, 64, 32, 128;
  ...
		

Crossrefs

See A144815 for more information on T(n,k).
Main diagonal and column k=0 gives A046161.
Column k=1 gives A101926(n-1) = 2^A101925(n-1) = 2^(A005187(n-1)+1).
Cf. A077070.

Programs

  • Maple
    # Function T(n,k) defined in A144815.
    seq(seq(denom(T(n,k)), k=0..n), n=0..10);
  • Mathematica
    row[n_] := Module[{f, a, eq}, f = Function[x, Sum[a[2*k+1]*x^(2*k+1), {k, 0, n}]]; eq = Table[Derivative[k][f][1] == If[k == 0, 1, 0], {k, 0, n}]; Table[a[2*k+1], {k, 0, n}] /. Solve[eq] // First]; Table[row[n] // Denominator, {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 03 2014 *)

A273926 Given G(x) such that G( G(x)^2 - G(x)^3 ) = x^2, then G(x) = Sum_{n>=1} A273925(n)*x^n / 2^a(n).

Original entry on oeis.org

0, 1, 3, 2, 7, 4, 10, 5, 15, 8, 18, 9, 22, 11, 25, 12, 31, 16, 34, 17, 38, 19, 41, 20, 46, 23, 49, 24, 53, 26, 56, 27, 63, 32, 66, 33, 70, 35, 73, 36, 78, 39, 81, 40, 85, 42, 88, 43, 94, 47, 97, 48, 101, 50, 104, 51, 109, 54, 112, 55, 116, 57, 119, 58, 127, 64, 130, 65, 134, 67, 137, 68, 142, 71, 145, 72, 149, 74, 152, 75, 158, 79, 161, 80, 165, 82, 168, 83, 173, 86, 176, 87, 180, 89, 183, 90, 190, 95, 193, 96, 197, 98, 200, 99, 205, 102, 208, 103, 212, 105, 215, 106, 221, 110, 224, 111, 228, 113, 231, 114
Offset: 1

Views

Author

Paul D. Hanna, Jun 04 2016

Keywords

Comments

Terms appear to occur only once in the sequence.
Both bisections of this sequence appear to be monotonically increasing.

Examples

			G.f.: G(x) = x + 1/2*x^2 + 3/8*x^3 + 3/4*x^4 + 175/128*x^5 + 41/16*x^6 + 4947/1024*x^7 + 321/32*x^8 + 687611/32768*x^9 + 11403/256*x^10 + 25132181/262144*x^11 + 107305/512*x^12 + 1941554203/4194304*x^13 + 2111325/2048*x^14 + 77643067507/33554432*x^15 + 21427329/4096*x^16 + 25549683166419/2147483648*x^17 + 1782548851/65536*x^18 + 1073363084982753/17179869184*x^19 + 18891311061/131072*x^20 + 91744420207896017/274877906944*x^21 + 406630578535/524288*x^22 + 3975787925128277349/2199023255552*x^23 + 4432136534071/1048576*x^24 +...+ A273925(n)*x^n / 2^a(n) +...
such that G( G(x)^2 - G(x)^3 ) = x^2.
The bisections of this sequence begin:
odd bisection (cf. A120738): [0, 3, 7, 10, 15, 18, 22, 25, 31, 34, 38, 41, 46, 49, 53, 56, 63, 66, 70, 73, 78, 81, 85, 88, 94, 97, 101, 104, 109, 112, 116, 119, 127, 130, 134, 137, 142, 145, 149, 152, 158, 161, 165, 168, 173, 176, 180, 183, 190, 193, 197, 200, 205, 208, 212, 215, 221, 224, 228, 231, 236, 239, 243, 246, 255, ...].
even bisection (cf. A101925): [1, 2, 4, 5, 8, 9, 11, 12, 16, 17, 19, 20, 23, 24, 26, 27, 32, 33, 35, 36, 39, 40, 42, 43, 47, 48, 50, 51, 54, 55, 57, 58, 64, 65, 67, 68, 71, 72, 74, 75, 79, 80, 82, 83, 86, 87, 89, 90, 95, 96, 98, 99, 102, 103, 105, 106, 110, 111, 113, 114, 117, 118, 120, 121, 128, ...].
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); for(i=0,n, A = serreverse( sqrt(subst(A,x,x^2 - x^3 +x^2*O(x^n) )) )); valuation(denominator(polcoeff(A,n)),2)}
    for(n=1,60,print1(a(n),", "))

Formula

a(2*n-1) = A120738(n-1) = 4*(n-1) - A000120(n-1), for n>=0 (conjecture).
a(2*n) = A101925(n-1) = A005187(n-1) + 1, for n>=0 (conjecture).
Showing 1-10 of 13 results. Next