cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001790 Numerators in expansion of 1/sqrt(1-x).

Original entry on oeis.org

1, 1, 3, 5, 35, 63, 231, 429, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 9694845, 300540195, 583401555, 2268783825, 4418157975, 34461632205, 67282234305, 263012370465, 514589420475, 8061900920775, 15801325804719
Offset: 0

Views

Author

Keywords

Comments

Also numerator of e(n-1,n-1) (see Maple line).
Leading coefficient of normalized Legendre polynomial.
Common denominator of expansions of powers of x in terms of Legendre polynomials P_n(x).
Also the numerator of binomial(2*n,n)/2^n. - T. D. Noe, Nov 29 2005
This sequence gives the numerators of the Maclaurin series of the Lorentz factor (see Wikipedia link) of 1/sqrt(1-b^2) = dt/dtau where b=u/c is the velocity in terms of the speed of light c, u is the velocity as observed in the reference frame where time t is measured and tau is the proper time. - Stephen Crowley, Apr 03 2007
Truncations of rational expressions like those given by the numerator operator are artifacts in integer formulas and have many disadvantages. A pure integer formula follows. Let n$ denote the swinging factorial and sigma(n) = number of '1's in the base-2 representation of floor(n/2). Then a(n) = (2*n)$ / sigma(2*n) = A056040(2*n) / A060632(2*n+1). Simply said: this sequence is the odd part of the swinging factorial at even indices. - Peter Luschny, Aug 01 2009
It appears that a(n) = A060818(n)*A001147(n)/A000142(n). - James R. Buddenhagen, Jan 20 2010
The convolution of sequence binomial(2*n,n)/4^n with itself is the constant sequence with all terms = 1.
a(n) equals the denominator of Hypergeometric2F1[1/2, n, 1 + n, -1] (see Mathematica code below). - John M. Campbell, Jul 04 2011
a(n) = numerator of (1/Pi)*Integral_{x=-oo..+oo} 1/(x^2-2*x+2)^n dx. - Leonid Bedratyuk, Nov 17 2012
a(n) = numerator of the mean value of cos(x)^(2*n) from x = 0 to 2*Pi. - Jean-François Alcover, Mar 21 2013
Constant terms for normalized Legendre polynomials. - Tom Copeland, Feb 04 2016
From Ralf Steiner, Apr 07 2017: (Start)
By analytic continuation to the entire complex plane there exist regularized values for divergent sums:
a(n)/A060818(n) = (-2)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} a(k)/A060818(k) = -i.
Sum_{k>=0} (-1)^k*a(k)/A060818(k) = 1/sqrt(3).
Sum_{k>=0} (-1)^(k+1)*a(k)/A060818(k) = -1/sqrt(3).
a(n)/A046161(n) = (-1)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} (-1)^k*a(k)/A046161(k) = 1/sqrt(2).
Sum_{k>=0} (-1)^(k+1)*a(k)/A046161(k) = -1/sqrt(2). (End)
a(n) = numerator of (1/Pi)*Integral_{x=-oo..+oo} 1/(x^2+1)^n dx. (n=1 is the Cauchy distribution.) - Harry Garst, May 26 2017
Let R(n, d) = (Product_{j prime to d} Pochhammer(j / d, n)) / n!. Then the numerators of R(n, 2) give this sequence and the denominators are A046161. For d = 3 see A273194/A344402. - Peter Luschny, May 20 2021
Using WolframAlpha, it appears a(n) gives the numerator in the residues of f(z) = 2z choose z at odd negative half integers. E.g., the residues of f(z) at z = -1/2, -3/2, -5/2 are 1/(2*Pi), 1/(16*Pi), and 3/(256*Pi) respectively. - Nicholas Juricic, Mar 31 2022
a(n) is the numerator of (1/Pi) * Integral_{x=-oo..+oo} sech(x)^(2*n+1) dx. The corresponding denominator is A046161. - Mohammed Yaseen, Jul 29 2023
a(n) is the numerator of (1/Pi) * Integral_{x=0..Pi/2} sin(x)^(2*n) dx. The corresponding denominator is A101926(n). - Mohammed Yaseen, Sep 19 2023

Examples

			1, 1, 3/2, 5/2, 35/8, 63/8, 231/16, 429/16, 6435/128, 12155/128, 46189/256, ...
binomial(2*n,n)/4^n => 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, ...
		

References

  • P. J. Davis, Interpolation and Approximation, Dover Publications, 1975, p. 372.
  • W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, 1968; Chap. III, Eq. 4.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:6 at page 51.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 102.

Crossrefs

Cf. A060818 (denominator of binomial(2*n,n)/2^n), A061549 (denominators).
Cf. A123854 (denominators).
Cf. A161198 (triangle of coefficients for (1-x)^((-1-2*n)/2)).
Cf. A163590 (odd part of the swinging factorial).
Cf. A001405.
First column and diagonal 1 of triangle A100258.
Bisection of A036069.
Bisections give A061548 and A063079.
Inverse Moebius transform of A180403/A046161.
Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), this sequence (p=-1), A001803 (p=-3), A161199 (p=-5), A161201 (p=-7).

Programs

  • Magma
    A001790:= func< n | Numerator((n+1)*Catalan(n)/4^n) >;
    [A001790(n): n in [0..40]]; // G. C. Greubel, Sep 23 2024
  • Maple
    e := proc(l,m) local k; add(2^(k-2*m)*binomial(2*m-2*k,m-k)*binomial(m+k,m)*binomial(k,l),k=l..m); end;
    # From Peter Luschny, Aug 01 2009: (Start)
    swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    sigma := n -> 2^(add(i,i=convert(iquo(n,2),base,2))):
    a := n -> swing(2*n)/sigma(2*n); # (End)
    A001790 := proc(n) binomial(2*n, n)/4^n ; numer(%) ; end proc : # R. J. Mathar, Jan 18 2013
  • Mathematica
    Numerator[ CoefficientList[ Series[1/Sqrt[(1 - x)], {x, 0, 25}], x]]
    Table[Denominator[Hypergeometric2F1[1/2, n, 1 + n, -1]], {n, 0, 34}]   (* John M. Campbell, Jul 04 2011 *)
    Numerator[Table[(-2)^n*Sqrt[Pi]/(Gamma[1/2 - n]*Gamma[1 + n]),{n,0,20}]] (* Ralf Steiner, Apr 07 2017 *)
    Numerator[Table[Binomial[2n,n]/2^n, {n, 0, 25}]] (* Vaclav Kotesovec, Apr 07 2017 *)
    Table[Numerator@LegendreP[2 n, 0]*(-1)^n, {n, 0, 25}] (* Andres Cicuttin, Jan 22 2018 *)
    A = {1}; Do[A = Append[A, 2^IntegerExponent[n, 2]*(2*n - 1)*A[[n]]/n], {n, 1, 25}]; Print[A] (* John Lawrence, Jul 17 2020 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( pollegendre(n), n) * 2^valuation((n\2*2)!, 2))};
    
  • PARI
    a(n)=binomial(2*n,n)>>hammingweight(n); \\ Gleb Koloskov, Sep 26 2021
    
  • Sage
    # uses[A000120]
    @CachedFunction
    def swing(n):
        if n == 0: return 1
        return swing(n-1)*n if is_odd(n) else 4*swing(n-1)/n
    A001790 = lambda n: swing(2*n)/2^A000120(2*n)
    [A001790(n) for n in (0..25)]  # Peter Luschny, Nov 19 2012
    

Formula

a(n) = numerator( binomial(2*n,n)/4^n ) (cf. A046161).
a(n) = A000984(n)/A001316(n) where A001316(n) is the highest power of 2 dividing C(2*n, n) = A000984(n). - Benoit Cloitre, Jan 27 2002
a(n) = denominator of (2^n/binomial(2*n,n)). - Artur Jasinski, Nov 26 2011
a(n) = numerator(L(n)), with rational L(n):=binomial(2*n,n)/2^n. L(n) is the leading coefficient of the Legendre polynomial P_n(x).
L(n) = (2*n-1)!!/n! with the double factorials (2*n-1)!! = A001147(n), n >= 0.
Numerator in (1-2t)^(-1/2) = 1 + t + (3/2)t^2 + (5/2)t^3 + (35/8)t^4 + (63/8)t^5 + (231/16)t^6 + (429/16)t^7 + ... = 1 + t + 3*t^2/2! + 15*t^3/3! + 105*t^4/4! + 945*t^5/5! + ... = e.g.f. for double factorials A001147 (cf. A094638). - Tom Copeland, Dec 04 2013
From Ralf Steiner, Apr 08 2017: (Start)
a(n)/A061549(n) = (-1/4)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} a(k)/A061549(k) = 2/sqrt(3).
Sum_{k>=0} (-1)^k*a(k)/A061549(k) = 2/sqrt(5).
Sum_{k>=0} (-1)^(k+1)*a(k)/A061549(k) = -2/sqrt(5).
a(n)/A123854(n) = (-1/2)^n*sqrt(Pi)/(gamma(1/2 - n)*gamma(1 + n)).
Sum_{k>=0} a(k)/A123854(k) = sqrt(2).
Sum_{k>=0} (-1)^k*a(k)/A123854(k) = sqrt(2/3).
Sum_{k>=0} (-1)^(k+1)*a(k)/A123854(k) = -sqrt(2/3). (End)
a(n) = 2^A007814(n)*(2*n-1)*a(n-1)/n. - John Lawrence, Jul 17 2020
Sum_{k>=0} A086117(k+3)/a(k+2) = Pi. - Antonio Graciá Llorente, Aug 31 2024
a(n) = A001803(n)/(2*n+1). - G. C. Greubel, Sep 23 2024

A001803 Numerators in expansion of (1 - x)^(-3/2).

Original entry on oeis.org

1, 3, 15, 35, 315, 693, 3003, 6435, 109395, 230945, 969969, 2028117, 16900975, 35102025, 145422675, 300540195, 9917826435, 20419054425, 83945001525, 172308161025, 1412926920405, 2893136075115, 11835556670925
Offset: 0

Views

Author

Keywords

Comments

a(n) is the denominator of the integral from 0 to Pi of (sin(x))^(2*n+1). - James R. Buddenhagen, Aug 17 2008
a(n) is the denominator of (2n)!!/(2*n + 1)!! = 2^(2*n)*n!*n!/(2*n + 1)! (see Andersson). - N. J. A. Sloane, Jun 27 2011
a(n) = (2*n + 1)*A001790(n). A046161(n)/a(n) = 1, 2/3, 8/15, 16/35, 128/315, 256/693, ... is binomial transform of Madhava-Gregory-Leibniz series for Pi/4 (i.e., 1 - 1/3 + 1/5 - 1/7 + ... ). See A173384 and A173396. - Paul Curtz, Feb 21 2010
a(n) is the denominator of Integral_{x=-oo..oo} sech(x)^(2*n+2) dx. The corresponding numerator is A101926(n). - Mohammed Yaseen, Jul 25 2023

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
  • G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:9 at page 51.

Crossrefs

The denominator is given in A046161.
Largest odd divisors of A001800, A002011, A002457, A005430, A033876, A086228.
Bisection of A004731, A004735, A086116.
Second column of triangle A100258.
Cf. A002596 (numerators in expansion of (1-x)^(1/2)).
Cf. A161198 (triangle related to the series expansions of (1-x)^((-1-2*n)/2)).
A163590 is the odd part of the swinging factorial, A001790 at even indices. - Peter Luschny, Aug 01 2009

Programs

  • Julia
    A001803(n) = sum(<<(A001790(k), A005187(n) - A005187(k)) for k in 0:n) # Peter Luschny, Oct 03 2019
    
  • Magma
    A001803:= func< n | Numerator(Binomial(n+2,2)*Catalan(n+1)/4^n) >;
    [A001803(n): n in [0..30]]; // G. C. Greubel, Apr 27 2025
    
  • Maple
    swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    sigma := n -> 2^(add(i,i= convert(iquo(n,2),base,2))):
    a := n -> swing(2*n+1)/sigma(2*n+1); # Peter Luschny, Aug 01 2009
    A001803 := proc(n) (2*n+1)*binomial(2*n,n)/4^n ; numer(%) ; end proc: # R. J. Mathar, Jul 06 2011
    a := n -> denom(Pi*binomial(n, -1/2)): seq(a(n), n = 0..22); # Peter Luschny, Dec 06 2024
  • Mathematica
    Numerator/@CoefficientList[Series[(1-x)^(-3/2),{x,0,25}],x]  (* Harvey P. Dale, Feb 19 2011 *)
    Table[Denominator[Beta[1, n + 1, 1/2]], {n, 0, 22}] (* Gerry Martens, Nov 13 2016 *)
  • PARI
    a(n) = numerator((2*n+1)*binomial(2*n,n)/(4^n)); \\ Altug Alkan, Sep 06 2018
    
  • SageMath
    def A001803(n): return numerator((n+1)*binomial(2*n+2,n+1)/2^(2*n+1))
    print([A001803(n) for n in range(31)]) # G. C. Greubel, Apr 27 2025

Formula

a(n) = (2*n + 1)! /(n!^2*2^A000120(n)) = (n + 1)*binomial(2*n+2,n+1)/2^(A000120(n)+1). - Ralf Stephan, Mar 10 2004
From Johannes W. Meijer, Jun 08 2009: (Start)
a(n) = numerator( (2*n+1)*binomial(2*n,n)/(4^n) ).
(1 - x)^(-3/2) = Sum_{n>=0} ((2*n+1)*binomial(2*n,n)/4^n)*x^n. (End)
Truncations of rational expressions like those given by the numerator or denominator operators are artifacts in integer formulas and have many disadvantages. A pure integer formula follows. Let n$ denote the swinging factorial and sigma(n) = number of '1's in the base-2 representation of floor(n/2). Then a(n) = (2*n+1)$ / sigma(2*n+1) = A056040(2*n+1) / A060632(2*n+2). Simply said: This sequence gives the odd part of the swinging factorial at odd indices. - Peter Luschny, Aug 01 2009
a(n) = denominator(Pi*binomial(n, -1/2)). - Peter Luschny, Dec 06 2024

A002454 Central factorial numbers: a(n) = 4^n * (n!)^2.

Original entry on oeis.org

1, 4, 64, 2304, 147456, 14745600, 2123366400, 416179814400, 106542032486400, 34519618525593600, 13807847410237440000, 6682998146554920960000, 3849406932415634472960000, 2602199086312968903720960000, 2040124083669367620517232640000, 1836111675302430858465509376000000
Offset: 0

Views

Author

Keywords

Comments

Denominators in the series for Bessel's J0(x) = 1 - x^2/4 + x^4/64 - x^6/2304 + ...
a(n) is the unreduced numerator in Product_{k=1..n} (4*k^2)/(4*k^2-1), therefore a(n)/A079484(n) = Pi/2 as n -> oo. - Daniel Suteu, Dec 02 2016
From Zhi-Wei Sun, Jun 26 2022: (Start)
Conjecture: Let zeta be a primitive 2n+1-th root of unity. Then the permanent of the 2n X 2n matrix [m(j,k)]_{j,k=1..2n} is a(n)/(2n+1) = ((2n)!!)^2/(2n+1), where m(j,k) is 1 or (1+zeta^(j-k))/(1-zeta^(j-k)) according as j = k or not.
The determinant of the matrix [m(j,k)]_{j,k=1..2n} was shown to be (-1)^(n-1)*((2n)!!)^2/(2n(2n+1)) by Han Wang and Zhi-Wei Sun in 2022. (End)

References

  • Richard Bellman, A Brief Introduction to Theta Functions, Dover, 2013 (20.1).
  • Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th german ed. 1965, ch. 4.4.7
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 110.
  • E. L. Ince, Ordinary Differential Equations, Dover, NY, 1956; see p. 173.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 49 and 52, equations 49:6:1 and 52:6:2 at pages 483, 513.

Crossrefs

Programs

Formula

(-1)^n*a(n) is the coefficient of x^1 in Product_{k=0..2*n} (x+2*k-2*n). - Benoit Cloitre and Michael Somos, Nov 22 2002
E.g.f.: A(x) = arcsin(x)*sec(arcsin(x)). - Vladimir Kruchinin, Sep 12 2010
E.g.f.: arcsin(x)*sec(arcsin(x)) = arcsin(x)/sqrt(1-x^2) = x/G(0); G(k) = 2k*(x^2+1)+1-x^2*(2k+1)*(2k+2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 20 2011
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (2*k+2)^2/(1-x/(x - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
From Ilya Gutkovskiy, Dec 02 2016: (Start)
a(n) ~ Pi*2^(2*n+1)*n^(2*n+1)/exp(2*n).
Sum_{n>=0} 1/a(n) = BesselI(0,1) = A197036. (End)
From Daniel Suteu, Dec 02 2016: (Start)
a(n) ~ 2^(2*n) * gamma(n+1/2) * gamma(n+3/2).
a(n) ~ Pi*(2*n+1)*(4*n^2-1)^n/exp(2*n). (End)
2*a(n)/(2*n+1)! = A101926(n) / A001803(n). - Daniel Suteu, Feb 03 2017
Limit_{n->oo} n*a(n)/((2n+1)!!)^2 = Pi/4. - Daniel Suteu, Nov 01 2017
Sum_{n>=0} (-1)^n/a(n) = BesselJ(0, 1) (A334380). - Amiram Eldar, Apr 09 2022
Limit_{n->oo} a(n) / (n * A001818(n)) = Pi. - Daniel Suteu, Apr 09 2022

A101925 a(n) = A005187(n) + 1.

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 11, 12, 16, 17, 19, 20, 23, 24, 26, 27, 32, 33, 35, 36, 39, 40, 42, 43, 47, 48, 50, 51, 54, 55, 57, 58, 64, 65, 67, 68, 71, 72, 74, 75, 79, 80, 82, 83, 86, 87, 89, 90, 95, 96, 98, 99, 102, 103, 105, 106, 110, 111, 113, 114, 117, 118, 120, 121, 128, 129
Offset: 0

Views

Author

Ralf Stephan, Dec 28 2004

Keywords

Comments

Exponent of 2 in the sequences A032184, A052278, A060055, A066318, A088229, A101926.
p(n) sequence for k=2, s=0. p(n) = min(j: A046699(j) = n). - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)

Crossrefs

Bisection of A089279. First differences are in A001511.

Programs

  • Mathematica
    Table[IntegerExponent[(2 n)!, 2] + 1, {n, 0, 65}] (* or *)
    Table[2 n - DigitCount[2 n, 2, 1] + 1, {n, 0, 65}] (* Michael De Vlieger, Feb 04 2017 *)
  • PARI
    a(n)=1+sum(k=1, n, valuation(k,2)+1)
    
  • PARI
    a(n)=if(n==0,1,if((n%2)==0,2*a(n/2)+subst(Pol(binary(n)),x,1)-1,a(n-1)+1))
    
  • PARI
    a(n)=2*n+1-hammingweight(n) \\ Charles R Greathouse IV, Dec 29 2022
    (Python 3.10+)
    def A101925(n): return (n<<1)-n.bit_count()+1 # Chai Wah Wu, Jul 13 2022

Formula

Recurrence: a(2n) = 2a(n) + A000120(n) - 1, a(2n+1) = a(2n) + 1.
G.f.: (1 / 1-z) * (z + z * sum(z^(2^i) * (s + (1 / (1 - z^(2^k)))),i=0..infinity)). - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)

A004731 a(0) = 1; thereafter a(n) = denominator of (n-2)!! / (n-1)!!.

Original entry on oeis.org

1, 1, 1, 2, 3, 8, 15, 16, 35, 128, 315, 256, 693, 1024, 3003, 2048, 6435, 32768, 109395, 65536, 230945, 262144, 969969, 524288, 2028117, 4194304, 16900975, 8388608, 35102025, 33554432, 145422675, 67108864, 300540195, 2147483648, 9917826435, 4294967296, 20419054425
Offset: 0

Views

Author

Keywords

Comments

Also numerator of rational part of Haar measure on Grassmannian space G(n,1).
Also rational part of numerator of Gamma(n/2+1)/Gamma(n/2+1/2) (cf. A036039).
Let x(m) = x(m-2) + 1/x(m-1) for m >= 3, with x(1)=x(2)=1. Then the numerator of x(n+2) equals the denominator of n!!/(n+1)!! for n >= 0, where the double factorials are given by A006882. - Joseph E. Cooper III (easonrevant(AT)gmail.com), Nov 07 2010, as corrected in Cooper (2015).
Numerator of (n-1)/( (n-2)/( .../1)), with an empty fraction taken to be 1. - Flávio V. Fernandes, Jan 31 2025

Examples

			1, 1, (1/2)*Pi, 2, (3/4)*Pi, 8/3, (15/16)*Pi, 16/5, (35/32)*Pi, 128/35, (315/256)*Pi, ...
The sequence Gamma(n/2+1)/Gamma(n/2+1/2), n >= 0, begins 1/Pi^(1/2), 1/2*Pi^(1/2), 2/Pi^(1/2), 3/4*Pi^(1/2), 8/3/Pi^(1/2), 15/16*Pi^(1/2), 16/5/Pi^(1/2), ...
		

References

  • D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge, p. 67.

Crossrefs

Cf. A001803, A004730, A006882 (double factorials), A036069.

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a004731 0 = 1
    a004731 n = a004731_list !! n
    a004731_list = map numerator ggs where
       ggs = 0 : 1 : zipWith (+) ggs (map (1 /) $ tail ggs) :: [Rational]
    -- Reinhard Zumkeller, Dec 08 2011
    
  • Maple
    if n mod 2 = 0 then k := n/2; 2*k*Pi*binomial(2*k-1,k)/4^k else k := (n-1)/2; 4^k/binomial(2*k,k); fi;
    f:=n->simplify(GAMMA(n/2+1)/GAMMA(n/2+1/2));
    #
    [1, seq(denom(doublefactorial(n-2)/doublefactorial(n-1)), n = 1..36)]; # Peter Luschny, Feb 09 2025
  • Mathematica
    Table[ Denominator[ (n-2)!! / (n-1)!! ], {n, 0, 31}] (* Jean-François Alcover, Jul 16 2012 *)
    Denominator[#[[1]]/#[[2]]&/@Partition[Range[-2,40]!!,2,1]] (* Harvey P. Dale, Nov 27 2014 *)
    Join[{1},Table[Numerator[(n/2-1/2)!/((n/2-1)!Sqrt[Pi])], {n,1,31}]] (* Peter Luschny, Feb 08 2025 *)
  • PARI
    f(n) = prod(i=0, (n-1)\2, n - 2*i); \\ A006882
    a(n) = if (n==0, 1, denominator(f(n-2)/f(n-1))); \\ Michel Marcus, Feb 08 2025
  • Python
    from sympy import gcd, factorial2
    def A004731(n):
        if n <= 1:
            return 1
        a, b = factorial2(n-2), factorial2(n-1)
        return b//gcd(a,b) # Chai Wah Wu, Apr 03 2021
    

Extensions

Name corrected by Michel Marcus, Feb 08 2025

A139566 a(n) is the sum of squares of digits of a(n-1); a(1)=15.

Original entry on oeis.org

15, 26, 40, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37
Offset: 1

Views

Author

Robert Gornall (rob(AT)khobbits.net), Jun 11 2008

Keywords

Crossrefs

Cf. A003132 (the iterated map), A003621, A039943, A099645, A031176, A007770, A000216 (starting with 2), A000218 (starting with 3), A080709 (starting with 4), A000221 (starting with 5), A008460 (starting with 6), A008462 (starting with 8), A008463 (starting with 9), A122065 (starting with 74169). - M. F. Hasler, May 24 2009

Programs

  • Mathematica
    a = {15}; Do[AppendTo[a, Plus @@ (IntegerDigits[a[[ -1]]]^2)], {70}]; a (* Stefan Steinerberger, Jun 14 2008 *)
    NestList[Total[IntegerDigits[#]^2] &, 15, 70] (* or *) PadRight[ {15,26,40},70,{42,20,4,16,37,58,89,145}](* Harvey P. Dale, Jan 28 2013 *)
  • PARI
    /* to check the given terms */
    a=[/* paste the terms here */]; a==vector(#a,n,k=if(n>1,A003132(k),15))
    /* to check the following code, use: a==vector(99,n,A139566(n)) */
    A139566(n)=[15,26,40,16,37,58,89,145,42,20,4][if(n>11,(n-4)%8+4,n)] \\ (End)
    
  • PARI
    Vec(x*(36*x^10+6*x^9-27*x^8-145*x^7-89*x^6-58*x^5-37*x^4-16*x^3 -40*x^2-26*x-15)/((x-1)*(x+1)*(x^2+1)*(x^4+1)) + O(x^70)) \\ Colin Barker, Aug 24 2015

Formula

Eventually periodic with period 8.
a(n) = A008463(n) for n > 4. - M. F. Hasler, May 24 2009
a(n) = a(n-8) for n > 11. - Colin Barker, Aug 24 2015
G.f.: x*(36*x^10 + 6*x^9 - 27*x^8 - 145*x^7 - 89*x^6 - 58*x^5 - 37*x^4 - 16*x^3 - 40*x^2 - 26*x - 15) / ((x-1)*(x+1)*(x^2+1)*(x^4+1)). - Colin Barker, Aug 24 2015

Extensions

More terms from Stefan Steinerberger, Jun 14 2008
Terms checked, using the given PARI code, by M. F. Hasler, May 24 2009
Minor edits and starting value added in name by M. F. Hasler, Apr 27 2018

A086117 Denominator of mean deviation of a symmetrical binomial distribution on n elements.

Original entry on oeis.org

2, 2, 4, 4, 16, 16, 32, 32, 256, 256, 512, 512, 2048, 2048, 4096, 4096, 65536, 65536, 131072, 131072, 524288, 524288, 1048576, 1048576, 8388608, 8388608, 16777216, 16777216, 67108864, 67108864, 134217728, 134217728, 4294967296, 4294967296
Offset: 1

Views

Author

Eric W. Weisstein, Jul 10 2003

Keywords

Comments

Also denominator of x(n)=Sum(x(k)*x(n-k-1):0<=kA098597(n)/a(n+2). - Reinhard Zumkeller, Feb 06 2008

Crossrefs

Twice A101926.

Programs

  • Mathematica
    Denominator[Table[If[OddQ[n], n!!/2/(n-1)!!, (n-1)!!/2/(n-2)!! ], {n, 50}]]

Formula

a(1)=2, a(n) = a(n-1)*A006519(n). - Jon Perry, Mar 31 2004
a(n) = 2^A113474(n-1). - Alan Michael Gómez Calderón, Apr 03 2025

A036069 Denominator of rational part of Haar measure on Grassmannian space G(n,1).

Original entry on oeis.org

1, 2, 1, 4, 3, 16, 5, 32, 35, 256, 63, 512, 231, 2048, 429, 4096, 6435, 65536, 12155, 131072, 46189, 524288, 88179, 1048576, 676039, 8388608, 1300075, 16777216, 5014575, 67108864, 9694845, 134217728, 300540195
Offset: 0

Views

Author

Keywords

Comments

Also rational part of denominator of Gamma(n/2+1)/Gamma(n/2+1/2) (cf. A004731).

Examples

			1, 1, 1/2*Pi, 2, 3/4*Pi, 8/3, 15/16*Pi, 16/5, 35/32*Pi, 128/35, 315/256*Pi, ...
The sequence Gamma(n/2+1)/Gamma(n/2+1/2), n >= 0, begins 1/Pi^(1/2), (1/2)*Pi^(1/2), 2/Pi^(1/2), (3/4)*Pi^(1/2), (8/3)/Pi^(1/2), (15/16)*Pi^(1/2), (16/5)/Pi^(1/2), ...
		

References

  • D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge, p. 67.

Crossrefs

Cf. A004731.
Bisections are A001790 and A101926.

Programs

  • Maple
    if n mod 2 = 0 then k := n/2; 2*k*Pi*binomial(2*k-1,k)/4^k else k := (n-1)/2; 4^k/binomial(2*k,k); fi;
    f:=n->simplify(GAMMA(n/2+1)/GAMMA(n/2+1/2));
  • Mathematica
    Table[ Denominator[ Gamma[n/2+1]/Gamma[n/2+1/2]*Sqrt[Pi]^(1 - 2 Mod[n, 2])], {n, 0, 32}] (* Jean-François Alcover, Jul 16 2012 *)

A144816 Denominators of triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the coefficient of x^(2*k+1) in polynomial t_n(x), used to define continuous and n times differentiable sigmoidal transfer functions.

Original entry on oeis.org

1, 2, 2, 8, 4, 8, 16, 16, 16, 16, 128, 32, 64, 32, 128, 256, 256, 128, 128, 256, 256, 1024, 512, 1024, 256, 1024, 512, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 32768, 4096, 8192, 4096, 16384, 4096, 8192, 4096, 32768, 65536, 65536, 16384, 16384, 32768, 32768, 16384, 16384, 65536, 65536
Offset: 0

Views

Author

Alois P. Heinz, Sep 21 2008

Keywords

Examples

			Triangle begins:
    1;
    2,  2;
    8,  4,  8;
   16, 16, 16, 16;
  128, 32, 64, 32, 128;
  ...
		

Crossrefs

See A144815 for more information on T(n,k).
Main diagonal and column k=0 gives A046161.
Column k=1 gives A101926(n-1) = 2^A101925(n-1) = 2^(A005187(n-1)+1).
Cf. A077070.

Programs

  • Maple
    # Function T(n,k) defined in A144815.
    seq(seq(denom(T(n,k)), k=0..n), n=0..10);
  • Mathematica
    row[n_] := Module[{f, a, eq}, f = Function[x, Sum[a[2*k+1]*x^(2*k+1), {k, 0, n}]]; eq = Table[Derivative[k][f][1] == If[k == 0, 1, 0], {k, 0, n}]; Table[a[2*k+1], {k, 0, n}] /. Solve[eq] // First]; Table[row[n] // Denominator, {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 03 2014 *)

A173396 a(n) = A046161(n) + A001803(n).

Original entry on oeis.org

2, 5, 23, 51, 443, 949, 4027, 8483, 142163, 296481, 1232113, 2552405, 21095279, 43490633, 178977107, 367649059, 12065310083, 24714021721, 101124870709, 206667899393, 1687804827349, 3442891889003, 14034579926477, 28583749273429
Offset: 0

Views

Author

Paul Curtz, Feb 17 2010

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n-> (NumeratorRat((2*n+1)*Binomial(2*n, n)/(4^n)) + DenominatorRat(Binomial(2*n, n)/(4^n)))); # G. C. Greubel, Dec 09 2018
  • Magma
    [Numerator((2*n+1)*Binomial(2*n, n)/(4^n)) + Denominator(Binomial(2*n, n)/(4^n)): n in [0..30]]; // G. C. Greubel, Dec 09 2018
    
  • Maple
    A001803 := proc(n) (2*n+1)*binomial(2*n,n)/4^n ; numer(%) ; end proc:
    A046161 := proc(n) binomial(2*n,n)/4^n ; denom(%) ; end proc:
    A173386 := proc(n) A001803(n)+A046161(n) ; end proc: # R. J. Mathar, Jul 06 2011
  • Mathematica
    Table[Numerator[(2*n+1)*Binomial[2*n, n]/(4^n)] + Denominator[Binomial[2*n, n]/(4^n)], {n,0,30}] (* G. C. Greubel, Dec 09 2018 *)
  • PARI
    for(n=0,30, print1(numerator((2*n+1)*binomial(2*n, n)/(4^n)) + denominator(binomial(2*n, n)/4^n), ", ")) \\ G. C. Greubel, Dec 09 2018
    
  • Sage
    [(numerator((2*n+1)*binomial(2*n, n)/(4^n)) + denominator(binomial(2*n, n)/(4^n))) for n in range(30)] # G. C. Greubel, Dec 09 2018
    

Formula

a(n) = A101926(n) + A173384(n).
Showing 1-10 of 11 results. Next