cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A002457 a(n) = (2n+1)!/n!^2.

Original entry on oeis.org

1, 6, 30, 140, 630, 2772, 12012, 51480, 218790, 923780, 3879876, 16224936, 67603900, 280816200, 1163381400, 4808643120, 19835652870, 81676217700, 335780006100, 1378465288200, 5651707681620, 23145088600920, 94684453367400, 386971244197200, 1580132580471900
Offset: 0

Views

Author

Keywords

Comments

Expected number of matches remaining in Banach's modified matchbox problem (counted when last match is drawn from one of the two boxes), multiplied by 4^(n-1). - Michael Steyer, Apr 13 2001
Hankel transform is (-1)^n*A014480(n). - Paul Barry, Apr 26 2009
Convolved with A000108: (1, 1, 1, 5, 14, 42, ...) = A000531: (1, 7, 38, 187, 874, ...). - Gary W. Adamson, May 14 2009
Convolution of A000302 and A000984. - Philippe Deléham, May 18 2009
1/a(n) is the integral of (x(1-x))^n on interval [0,1]. Apparently John Wallis computed these integrals for n=0,1,2,3,.... A004731, shifted left by one, gives numerators/denominators of related integrals (1-x^2)^n on interval [0,1]. - Marc van Leeuwen, Apr 14 2010
Extend the triangular peaks of Dyck paths of semilength n down to the baseline forming (possibly) larger and overlapping triangles. a(n) = sum of areas of these triangles. Also a(n) = triangular(n) * Catalan(n). - David Scambler, Nov 25 2010
Let H be the n X n Hilbert matrix H(i,j) = 1/(i+j-1) for 1 <= i,j <= n. Let B be the inverse matrix of H. The sum of the elements in row n of B equals a(n-1). - T. D. Noe, May 01 2011
Apparently the number of peaks in all symmetric Dyck paths with semilength 2n+1. - David Scambler, Apr 29 2013
Denominator of central elements of Leibniz's Harmonic Triangle A003506.
Central terms of triangle A116666. - Reinhard Zumkeller, Nov 02 2013
Number of distinct strings of length 2n+1 using n letters A, n letters B, and 1 letter C. - Hans Havermann, May 06 2014
Number of edges in the Hasse diagram of the poset of partitions in the n X n box ordered by containment (from Havermann's comment above, C represents the square added in the edge). - William J. Keith, Aug 18 2015
Let V(n, r) denote the volume of an n-dimensional sphere with radius r then V(n, 1/2^n) = V(n-1, 1/2^n) / a((n-1)/2) for all odd n. - Peter Luschny, Oct 12 2015
a(n) is the result of processing the n+1 row of Pascal's triangle A007318 with the method of A067056. Example: Let n=3. Given the 4th row of Pascal's triangle 1,4,6,4,1, we get 1*(4+6+4+1) + (1+4)*(6+4+1) + (1+4+6)*(4+1) + (1+4+6+4)*1 = 15+55+55+15 = 140 = a(3). - J. M. Bergot, May 26 2017
a(n) is the number of (n+1) X 2 Young tableaux with a two horizontal walls between the first and second column. If there is a wall between two cells, the entries may be decreasing; see [Banderier, Wallner 2021] and A000984 for one horizontal wall. - Michael Wallner, Jan 31 2022
a(n) is the number of facets of the symmetric edge polytope of the cycle graph on 2n+1 vertices. - Mariel Supina, May 12 2022
Diagonal of the rational function 1 / (1 - x - y)^2. - Ilya Gutkovskiy, Apr 23 2025

Examples

			G.f. = 1 + 6*x + 30*x^2 + 140*x^3 + 630*x^4 + 2772*x^5 + 12012*x^6 + 51480*x^7 + ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 159.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25; p. 168, #30.
  • W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I.
  • C. Jordan, Calculus of Finite Differences. Röttig and Romwalter, Budapest, 1939; Chelsea, NY, 1965, p. 449.
  • M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 127-129.
  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 514.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 92.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. Wallis, Operum Mathematicorum, pars altera, Oxford, 1656, pp 31,34 [Marc van Leeuwen, Apr 14 2010]

Crossrefs

Cf. A000531 (Banach's original match problem).
Cf. A033876, A000984, A001803, A132818, A046521 (second column).
A diagonal of A331430.
The rightmost diagonal of the triangle A331431.

Programs

Formula

G.f.: (1-4x)^(-3/2) = 1F0(3/2;;4x).
a(n-1) = binomial(2*n, n)*n/2 = binomial(2*n-1, n)*n.
a(n-1) = 4^(n-1)*Sum_{i=0..n-1} binomial(n-1+i, i)*(n-i)/2^(n-1+i).
a(n) ~ 2*Pi^(-1/2)*n^(1/2)*2^(2*n)*{1 + 3/8*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 21 2001
(2*n+2)!/(2*n!*(n+1)!) = (n+n+1)!/(n!*n!) = 1/beta(n+1, n+1) in A061928.
Sum_{i=0..n} i * binomial(n, i)^2 = n*binomial(2*n, n)/2. - Yong Kong (ykong(AT)curagen.com), Dec 26 2000
a(n) ~ 2*Pi^(-1/2)*n^(1/2)*2^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002
a(n) = 1/Integral_{x=0..1} x^n (1-x)^n dx. - Fred W. Helenius (fredh(AT)ix.netcom.com), Jun 10 2003
E.g.f.: exp(2*x)*((1+4*x)*BesselI(0, 2*x) + 4*x*BesselI(1, 2*x)). - Vladeta Jovovic, Sep 22 2003
a(n) = Sum_{i+j+k=n} binomial(2i, i)*binomial(2j, j)*binomial(2k, k). - Benoit Cloitre, Nov 09 2003
a(n) = (2*n+1)*A000984(n) = A005408(n)*A000984(n). - Zerinvary Lajos, Dec 12 2010
a(n-1) = Sum_{k=0..n} A039599(n,k)*A000217(k), for n >= 1. - Philippe Deléham, Jun 10 2007
Sum of (n+1)-th row terms of triangle A132818. - Gary W. Adamson, Sep 02 2007
Sum_{n>=0} 1/a(n) = 2*Pi/3^(3/2). - Jaume Oliver Lafont, Mar 07 2009
a(n) = Sum_{k=0..n} binomial(2k,k)*4^(n-k). - Paul Barry, Apr 26 2009
a(n) = A000217(n) * A000108(n). - David Scambler, Nov 25 2010
a(n) = f(n, n-3) where f is given in A034261.
a(n) = A005430(n+1)/2 = A002011(n)/4.
a(n) = binomial(2n+2, 2) * binomial(2n, n) / binomial(n+1, 1), a(n) = binomial(n+1, 1) * binomial(2n+2, n+1) / binomial(2, 1) = binomial(2n+2, n+1) * (n+1)/2. - Rui Duarte, Oct 08 2011
G.f.: (G(0) - 1)/(4*x) where G(k) = 1 + 2*x*((2*k + 3)*G(k+1) - 1)/(k + 1). - Sergei N. Gladkovskii, Dec 03 2011 [Edited by Michael Somos, Dec 06 2013]
G.f.: 1 - 6*x/(G(0)+6*x) where G(k) = 1 + (4*x+1)*k - 6*x - (k+1)*(4*k-2)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 13 2012
G.f.: Q(0), where Q(k) = 1 + 4*(2*k + 1)*x*(2*k + 2 + Q(k+1))/(k+1). - Sergei N. Gladkovskii, May 10 2013 [Edited by Michael Somos, Dec 06 2013]
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 4*x*(2*k+3)/(4*x*(2*k+3) + 2*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
a(n) = 2^(4n)/Sum_{k=0..n} (-1)^k*C(2n+1,n-k)/(2k+1). - Mircea Merca, Nov 12 2013
a(n) = (2*n)!*[x^(2*n)] HeunC(0,0,-2,-1/4,7/4,4*x^2) where [x^n] f(x) is the coefficient of x^n in f(x) and HeunC is the Heun confluent function. - Peter Luschny, Nov 22 2013
0 = a(n) * (16*a(n+1) - 2*a(n+2)) + a(n+1) * (a(n+2) - 6*a(n+1)) for all n in Z. - Michael Somos, Dec 06 2013
a(n) = 4^n*binomial(n+1/2, 1/2). - Peter Luschny, Apr 24 2014
a(n) = 4^n*hypergeom([-2*n,-2*n-1,1/2],[-2*n-2,1],2)*(n+1)*(2*n+1). - Peter Luschny, Sep 22 2014
a(n) = 4^n*hypergeom([-n,-1/2],[1],1). - Peter Luschny, May 19 2015
a(n) = 2*4^n*Gamma(3/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
Sum_{n >= 0} 2^(n+1)/a(n) = Pi, related to Newton/Euler's Pi convergence transformation series. - Tony Foster III, Jul 28 2016. See the Weisstein Pi link, eq. (23). - Wolfdieter Lang, Aug 26 2016
Boas-Buck recurrence: a(n) = (6/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, and a(0) = 1. Proof from a(n) = A046521(n+1,1). See comment in A046521. - Wolfdieter Lang, Aug 10 2017
a(n) = (1/3)*Sum_{i = 0..n+1} C(n+1,i)*C(n+1,2*n+1-i)*C(3*n+2-i,n+1) = (1/3)*Sum_{i = 0..2*n+1} (-1)^(i+1)*C(2*n+1,i)*C(n+i+1,i)^2. - Peter Bala, Feb 07 2018
a(n) = (2*n+1)*binomial(2*n, n). - Kolosov Petro, Apr 16 2018
a(n) = (-4)^n*binomial(-3/2, n). - Peter Luschny, Oct 23 2018
a(n) = 1 / Sum_{s=0..n} (-1)^s * binomial(n, s) / (n+s+1). - Kolosov Petro, Jan 22 2019
a(n) = Sum_{k = 0..n} (2*k + 1)*binomial(2*n + 1, n - k). - Peter Bala, Feb 25 2019
4^n/a(n) = Integral_{x=0..1} (1 - x^2)^n. - Michael Somos, Jun 13 2019
D-finite with recurrence: 0 = a(n)*(6 + 4*n) - a(n+1)*(n + 1) for all n in Z. - Michael Somos, Jun 13 2019
Sum_{n>=0} (-1)^n/a(n) = 4*arcsinh(1/2)/sqrt(5). - Amiram Eldar, Sep 10 2020
From Jianing Song, Apr 10 2022: (Start)
G.f. for {1/a(n)}: 4*arcsin(sqrt(x)/2) / sqrt(x*(4-x)).
E.g.f. for {1/a(n)}: exp(x/4)*sqrt(Pi/x)*erf(sqrt(x)/2). (End)
G.f. for {1/a(n)}: 4*arctan(sqrt(x/(4-x))) / sqrt(x*(4-x)). - Michael Somos, Jun 17 2023
a(n) = Sum_{k = 0..n} (-1)^(n+k) * (n + 2*k + 1)*binomial(n+k, k). This is the particular case m = 1 of the identity Sum_{k = 0..m*n} (-1)^k * (n + 2*k + 1) * binomial(n+k, k) = (-1)^(m*n) * (m*n + 1) * binomial((m+1)*n+1, n). Cf. A090816 and A306290. - Peter Bala, Nov 02 2024
a(n) = (1/Pi)*(2*n + 1)*(2^(2*n + 1))*Integral_{x=0..oo} 1/(x^2 + 1)^(n + 1) dx. - Velin Yanev, Jan 28 2025

A001803 Numerators in expansion of (1 - x)^(-3/2).

Original entry on oeis.org

1, 3, 15, 35, 315, 693, 3003, 6435, 109395, 230945, 969969, 2028117, 16900975, 35102025, 145422675, 300540195, 9917826435, 20419054425, 83945001525, 172308161025, 1412926920405, 2893136075115, 11835556670925
Offset: 0

Views

Author

Keywords

Comments

a(n) is the denominator of the integral from 0 to Pi of (sin(x))^(2*n+1). - James R. Buddenhagen, Aug 17 2008
a(n) is the denominator of (2n)!!/(2*n + 1)!! = 2^(2*n)*n!*n!/(2*n + 1)! (see Andersson). - N. J. A. Sloane, Jun 27 2011
a(n) = (2*n + 1)*A001790(n). A046161(n)/a(n) = 1, 2/3, 8/15, 16/35, 128/315, 256/693, ... is binomial transform of Madhava-Gregory-Leibniz series for Pi/4 (i.e., 1 - 1/3 + 1/5 - 1/7 + ... ). See A173384 and A173396. - Paul Curtz, Feb 21 2010
a(n) is the denominator of Integral_{x=-oo..oo} sech(x)^(2*n+2) dx. The corresponding numerator is A101926(n). - Mohammed Yaseen, Jul 25 2023

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
  • G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:9 at page 51.

Crossrefs

The denominator is given in A046161.
Largest odd divisors of A001800, A002011, A002457, A005430, A033876, A086228.
Bisection of A004731, A004735, A086116.
Second column of triangle A100258.
Cf. A002596 (numerators in expansion of (1-x)^(1/2)).
Cf. A161198 (triangle related to the series expansions of (1-x)^((-1-2*n)/2)).
A163590 is the odd part of the swinging factorial, A001790 at even indices. - Peter Luschny, Aug 01 2009

Programs

  • Julia
    A001803(n) = sum(<<(A001790(k), A005187(n) - A005187(k)) for k in 0:n) # Peter Luschny, Oct 03 2019
    
  • Magma
    A001803:= func< n | Numerator(Binomial(n+2,2)*Catalan(n+1)/4^n) >;
    [A001803(n): n in [0..30]]; // G. C. Greubel, Apr 27 2025
    
  • Maple
    swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    sigma := n -> 2^(add(i,i= convert(iquo(n,2),base,2))):
    a := n -> swing(2*n+1)/sigma(2*n+1); # Peter Luschny, Aug 01 2009
    A001803 := proc(n) (2*n+1)*binomial(2*n,n)/4^n ; numer(%) ; end proc: # R. J. Mathar, Jul 06 2011
    a := n -> denom(Pi*binomial(n, -1/2)): seq(a(n), n = 0..22); # Peter Luschny, Dec 06 2024
  • Mathematica
    Numerator/@CoefficientList[Series[(1-x)^(-3/2),{x,0,25}],x]  (* Harvey P. Dale, Feb 19 2011 *)
    Table[Denominator[Beta[1, n + 1, 1/2]], {n, 0, 22}] (* Gerry Martens, Nov 13 2016 *)
  • PARI
    a(n) = numerator((2*n+1)*binomial(2*n,n)/(4^n)); \\ Altug Alkan, Sep 06 2018
    
  • SageMath
    def A001803(n): return numerator((n+1)*binomial(2*n+2,n+1)/2^(2*n+1))
    print([A001803(n) for n in range(31)]) # G. C. Greubel, Apr 27 2025

Formula

a(n) = (2*n + 1)! /(n!^2*2^A000120(n)) = (n + 1)*binomial(2*n+2,n+1)/2^(A000120(n)+1). - Ralf Stephan, Mar 10 2004
From Johannes W. Meijer, Jun 08 2009: (Start)
a(n) = numerator( (2*n+1)*binomial(2*n,n)/(4^n) ).
(1 - x)^(-3/2) = Sum_{n>=0} ((2*n+1)*binomial(2*n,n)/4^n)*x^n. (End)
Truncations of rational expressions like those given by the numerator or denominator operators are artifacts in integer formulas and have many disadvantages. A pure integer formula follows. Let n$ denote the swinging factorial and sigma(n) = number of '1's in the base-2 representation of floor(n/2). Then a(n) = (2*n+1)$ / sigma(2*n+1) = A056040(2*n+1) / A060632(2*n+2). Simply said: This sequence gives the odd part of the swinging factorial at odd indices. - Peter Luschny, Aug 01 2009
a(n) = denominator(Pi*binomial(n, -1/2)). - Peter Luschny, Dec 06 2024

A004730 Numerator of n!!/(n+1)!! (cf. A006882).

Original entry on oeis.org

1, 1, 2, 3, 8, 5, 16, 35, 128, 63, 256, 231, 1024, 429, 2048, 6435, 32768, 12155, 65536, 46189, 262144, 88179, 524288, 676039, 4194304, 1300075, 8388608, 5014575, 33554432, 9694845, 67108864, 300540195, 2147483648, 583401555, 4294967296, 2268783825
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A004731 (denominator), A006882 (double factorials).

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a004730 n = a004730_list !! n
    a004730_list = map denominator ggs where
       ggs = 1 : 2 : zipWith (+) ggs (map (1 /) $ tail ggs) :: [Rational]
    -- Reinhard Zumkeller, Dec 08 2011
    
  • Magma
    DoubleFactorial:=func< n | &*[n..2 by -2] >; [ Numerator(DoubleFactorial(n) / DoubleFactorial(n+1)): n in [0..35]]; // Vincenzo Librandi, Dec 03 2018
    
  • Mathematica
    Numerator[#[[1]]/#[[2]]&/@Partition[Range[0,40]!!,2,1]] (* Harvey P. Dale, Jan 22 2013 *)
    Numerator[CoefficientList[Series[(1 - Sqrt[1 - c^2] + ArcSin[c])/(c Sqrt[1 - c^2]),{c, 0, 39}], c]] (* Eugene d'Eon, Nov 01 2018 *)
  • PARI
    f(n) = prod(i=0, (n-1)\2, n - 2*i); \\ A006882
    a(n) = numerator(f(n)/f(n+1)); \\ Michel Marcus, Feb 09 2025
  • Python
    from sympy import gcd, factorial2
    def A004730(n):
        a, b = factorial2(n), factorial2(n+1)
        return a//gcd(a,b) # Chai Wah Wu, Apr 03 2021
    

Formula

Let y(m) = y(m-2) + 1/y(m-1) for m >= 2, with y(0)=y(1)=1. Then the denominator of y(n+1) equals the numerator of n!!/(n+1)!! for n >= 0, where the double factorials are given by A006882. [Reinhard Zumkeller, Dec 08 2011, as corrected in Cooper (2015)]

A076668 Decimal expansion of sqrt(2/Pi).

Original entry on oeis.org

7, 9, 7, 8, 8, 4, 5, 6, 0, 8, 0, 2, 8, 6, 5, 3, 5, 5, 8, 7, 9, 8, 9, 2, 1, 1, 9, 8, 6, 8, 7, 6, 3, 7, 3, 6, 9, 5, 1, 7, 1, 7, 2, 6, 2, 3, 2, 9, 8, 6, 9, 3, 1, 5, 3, 3, 1, 8, 5, 1, 6, 5, 9, 3, 4, 1, 3, 1, 5, 8, 5, 1, 7, 9, 8, 6, 0, 3, 6, 7, 7, 0, 0, 2, 5, 0, 4, 6, 6, 7, 8, 1, 4, 6, 1, 3, 8, 7, 2, 8, 6, 0, 6, 0
Offset: 0

Views

Author

Zak Seidov, Oct 25 2002

Keywords

Comments

This is the limit of (n+1)!!/n!!/n^(1/2) at n_even->inf.
Expected value of |x - mu|/sigma for normal distribution with mean mu and standard deviation sigma (i.e., the normalized mean absolute deviation). - Stanislav Sykora, Jun 30 2017

Examples

			0.79788456080286535587989211986876373695171726232986931533...
		

Crossrefs

Cf. A004730, A004731, A019727, A060294 (Buffon's constant 2/Pi), A092678 (probable error).

Programs

  • Magma
    pi:=Sqrt(2/Pi(RealField(110))); Reverse(Intseq(Floor(10^110*pi))); // Vincenzo Librandi, Jul 01 2017
    
  • Mathematica
    RealDigits[Sqrt[2/Pi],10,120][[1]] (* Harvey P. Dale, Feb 05 2012 *)
  • PARI
    sqrt(2/Pi) \\ G. C. Greubel, Sep 23 2017

Formula

Equals A087197*A002193. - R. J. Mathar Feb 05 2009
Equals integral_{-infinity..infinity} (1-erf(x)^2)/2 dx. - Jean-François Alcover, Feb 25 2015

Extensions

More terms and better description from Benoit Cloitre and Michael Somos, Oct 29 2002
Leading zero removed, offset changed by R. J. Mathar, Feb 05 2009

A004739 Concatenation of sequences (1,2,2,...,n-1,n-1,n,n,n-1,n-1,...,2,2,1) for n >= 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7
Offset: 1

Views

Author

R. Muller

Keywords

Comments

From Artur Jasinski, Mar 07 2010: (Start)
Zeta(2, k/p) + Zeta(2, (p-k)/p) = (Pi/sin((Pi*a(n))/p))*2, where p=2,3,4, k=1..p-1.
This sequence is the odd subset of A003983 for odd p=3,5,7,9,....
For the even subset of A003983 see A004737. (End)
Table T(n,k) n, k > 0, T(n,k) = n-k+1, if n >= k, T(n,k) = k-n, if n < k. Table read by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1). General case A209301. Let m be a natural number. The first column of the table T(n,1) is the sequence of the natural numbers A000027. In all columns with number k (k > 1) the segment with the length of (k-1): {m+k-2, m+k-3, ..., m} shifts the sequence A000027. For m=1 the result is A004739, for m=2 the result is A004738, for m=3 the result is A209301. - Boris Putievskiy, Jan 24 2013

Examples

			From _Boris Putievskiy_, Jan 24 2013: (Start)
The start of the sequence as table:
  1, 1, 2, 3, 4, 5, 6, ...
  2, 1, 1, 2, 3, 4, 5, ...
  3, 2, 1, 1, 2, 3, 4, ...
  4, 3, 2, 1, 1, 2, 3, ...
  5, 4, 3, 2, 1, 1, 2, ...
  6, 5, 4, 3, 2, 1, 1, ...
  7, 6, 5, 4, 3, 2, 1, ...
  ...
The start of the sequence as triangle array read by rows:
  1;
  1, 1, 2;
  2, 1, 1, 2, 3;
  3, 2, 1, 1, 2, 3, 4;
  4, 3, 2, 1, 1, 2, 3, 4, 5;
  5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6;
  6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7;
  ...
Row number r contains 2*r - 1 numbers: r-1, r-2, ..., 1, 1, 2, ..., r. (End)
		

Crossrefs

Programs

  • Haskell
    a004739 n = a004739_list !! (n-1)
    a004739_list = concat $ map (\n -> [1..n] ++ [n,n-1..1]) [1..]
    -- Reinhard Zumkeller, Mar 26 2011
  • Mathematica
    aa = {}; Do[Do[AppendTo[aa, (p/Pi) ArcSin[Sqrt[1/((1/Pi^2) (Zeta[2, k/p] + Zeta[2, (p - k)/p]))]]], {k, 1, p - 1}], {p, 3, 50, 2}]; Round[N[aa, 50]] (* Artur Jasinski, Mar 07 2010 *)

Formula

From Boris Putievskiy, Jan 24 2013: (Start)
For the general case,
a(n) = m*v + (2*v-1)*(t*t-n) + t, where t = floor(sqrt(n) - 1/2) + 1 and v = floor((n-1)/t) - t + 1.
For m=1,
a(n) = v + (2*v-1)*(t*t-n) + t, where t = floor(sqrt(n) - 1/2) + 1 and v = floor((n-1)/t) - t + 1. (End)

Extensions

More terms from Patrick De Geest, Jun 15 1998

A036069 Denominator of rational part of Haar measure on Grassmannian space G(n,1).

Original entry on oeis.org

1, 2, 1, 4, 3, 16, 5, 32, 35, 256, 63, 512, 231, 2048, 429, 4096, 6435, 65536, 12155, 131072, 46189, 524288, 88179, 1048576, 676039, 8388608, 1300075, 16777216, 5014575, 67108864, 9694845, 134217728, 300540195
Offset: 0

Views

Author

Keywords

Comments

Also rational part of denominator of Gamma(n/2+1)/Gamma(n/2+1/2) (cf. A004731).

Examples

			1, 1, 1/2*Pi, 2, 3/4*Pi, 8/3, 15/16*Pi, 16/5, 35/32*Pi, 128/35, 315/256*Pi, ...
The sequence Gamma(n/2+1)/Gamma(n/2+1/2), n >= 0, begins 1/Pi^(1/2), (1/2)*Pi^(1/2), 2/Pi^(1/2), (3/4)*Pi^(1/2), (8/3)/Pi^(1/2), (15/16)*Pi^(1/2), (16/5)/Pi^(1/2), ...
		

References

  • D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge, p. 67.

Crossrefs

Cf. A004731.
Bisections are A001790 and A101926.

Programs

  • Maple
    if n mod 2 = 0 then k := n/2; 2*k*Pi*binomial(2*k-1,k)/4^k else k := (n-1)/2; 4^k/binomial(2*k,k); fi;
    f:=n->simplify(GAMMA(n/2+1)/GAMMA(n/2+1/2));
  • Mathematica
    Table[ Denominator[ Gamma[n/2+1]/Gamma[n/2+1/2]*Sqrt[Pi]^(1 - 2 Mod[n, 2])], {n, 0, 32}] (* Jean-François Alcover, Jul 16 2012 *)

A338719 Define b(1)=1 and for n>1, b(n)=n/b(n-1); then a(n) = ceiling(b(n)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 3, 4, 3, 5, 3, 5, 3, 5, 4, 6, 4, 6, 4, 6, 4, 6, 4, 7, 5, 7, 5, 7, 5, 7, 5, 8, 5, 8, 5, 8, 5, 8, 6, 8, 6, 9, 6, 9, 6, 9, 6, 9, 6, 9, 6, 10, 6, 10, 6, 10, 7, 10, 7, 10, 7, 10, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11, 8, 12, 8, 12, 8, 12, 8, 12, 8, 12, 8
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2020, following a suggestion from Anchar Koops, Nov 24 2020

Keywords

Examples

			The first few fractions b(n) are 1, 2, 3/2, 8/3, 15/8, 16/5, 35/16, 128/35, 315/128, 256/63, 693/256, 1024/231, 3003/1024, 2048/429, ...
		

Crossrefs

For the numerators and denominators of b(n) see A004731 and A004730.

Programs

  • Maple
    R:= 1:
    b:= 1:
    for i from 2 to 100 do
      b:= i/b;
      R:= R, ceil(b)
    od:
    R; # Robert Israel, Jul 21 2024

A338720 Define b(1)=1 and for n>1, b(n)=n/b(n-1); then a(n) = nearest integer to b(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 2, 4, 3, 4, 3, 5, 3, 5, 3, 5, 4, 6, 4, 6, 4, 6, 4, 6, 4, 7, 4, 7, 4, 7, 5, 7, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 9, 5, 9, 6, 9, 6, 9, 6, 9, 6, 9, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 7, 10, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11, 7, 12, 7, 12, 7
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2020, following a suggestion from Anchar Koops, Nov 24 2020

Keywords

Comments

Since b(3) = 3/2, a(3) could also be taken to be 1.

Examples

			The first few fractions b(n) are 1, 2, 3/2, 8/3, 15/8, 16/5, 35/16, 128/35, 315/128, 256/63, 693/256, 1024/231, 3003/1024, 2048/429, ...
		

Crossrefs

For the numerators and denominators of b(n) see A004731 and A004730.

Programs

  • Maple
    A338720b := proc(n)
        option remember ;
        if n = 1 then
            1;
        else
            n/procname(n-1) ;
        end if;
    end proc:
    A338720 := proc(n)
        round(A338720b(n)) ;
    end proc:
    seq(A338720(n),n=1..87) ; # R. J. Mathar, Dec 01 2020
  • Mathematica
    b[n_] := b[n] = If[n == 1, 1, n/b[n-1]];
    a[n_] := Round[b[n]];
    Table[a[n], {n, 1, 87}] (* Jean-François Alcover, Apr 23 2023 *)

A380909 a(n) = numerator(n!! / (n - 1)!!).

Original entry on oeis.org

1, 1, 2, 3, 8, 15, 16, 35, 128, 315, 256, 693, 1024, 3003, 2048, 6435, 32768, 109395, 65536, 230945, 262144, 969969, 524288, 2028117, 4194304, 16900975, 8388608, 35102025, 33554432, 145422675, 67108864, 300540195, 2147483648, 9917826435, 4294967296, 20419054425
Offset: 0

Views

Author

Peter Luschny, Feb 09 2025

Keywords

Comments

Perhaps surprisingly, the double factorial is also defined for n = -1. The reason for this is that (-1/2)! is well defined. See the first formula.

Crossrefs

Cf. A380910 (denominator), A006882, A095987, A004730, A004731.

Programs

  • Maple
    seq(numer(doublefactorial(n) / doublefactorial(n - 1)), n = 0..20);
    # Alternative:
    a := n -> numer((GAMMA(n/2 + 1) / GAMMA(n/2 + 1/2)) * ifelse(n::even, sqrt(Pi), 2/sqrt(Pi))):
    seq(a(n), n = 0..35);
  • Mathematica
    A380909[n_] := Numerator[n!!/(n - 1)!!]; Array[A380909, 50, 0] (* or *)
    Numerator[FoldList[#2/# &, 1, Range[49]]] (* Paolo Xausa, Feb 11 2025 *)
  • Python
    from fractions import Fraction
    from functools import cache
    @cache
    def R(n: int) -> Fraction:
        if n == 0: return Fraction(1, 1)
        return Fraction(n, 1) / R(n - 1)
    def aList(upto:int) -> list[int]:
        return [R(n).numerator for n in range(upto + 1)]
    print(aList(35))

Formula

r(n) = ((n/2)! / ((n - 1) / 2)!) * [sqrt(Pi) if n is even otherwise 2/sqrt(Pi)].
r(n) = n / r(n - 1) for n >= 1.
r(n) ~ sqrt(n)*exp(1/(4*n))*(Pi/2)^(cos(Pi*n)/2).
Product_{k=0..n} r(k) = A006882(n).
a(n) = numerator(r(n)).
a(n) = A006882(n)/A095987(n). - R. J. Mathar, Feb 10 2025
a(n) = A004731(n+1). - R. J. Mathar, Feb 10 2025

A380910 a(n) = denominator(n!! / (n - 1)!!).

Original entry on oeis.org

1, 1, 1, 2, 3, 8, 5, 16, 35, 128, 63, 256, 231, 1024, 429, 2048, 6435, 32768, 12155, 65536, 46189, 262144, 88179, 524288, 676039, 4194304, 1300075, 8388608, 5014575, 33554432, 9694845, 67108864, 300540195, 2147483648, 583401555, 4294967296, 2268783825, 17179869184
Offset: 0

Views

Author

Peter Luschny, Feb 09 2025

Keywords

Crossrefs

Cf. A380909 (numerator).

Programs

  • Maple
    seq(denom(doublefactorial(n) / doublefactorial(n - 1)), n = 0..20);
    # Alternative:
    a := n -> denom((GAMMA(n/2 + 1) / GAMMA(n/2 + 1/2)) * ifelse(n::even, sqrt(Pi), 2/sqrt(Pi))):
    seq(a(n), n = 0..35);
  • Mathematica
    A380910[n_] := Denominator[n!!/(n - 1)!!]; Array[A380910, 50, 0] (* or *)
    Denominator[FoldList[#2/# &, 1, Range[49]]] (* Paolo Xausa, Feb 11 2025 *)
  • Python
    from fractions import Fraction
    from functools import cache
    @cache
    def R(n: int) -> Fraction:
        if n == 0: return Fraction(1, 1)
        return Fraction(n, 1) / R(n - 1)
    def aList(upto:int) -> list[int]:
        return [R(n).denominator for n in range(upto + 1)]
    print(aList(37))

Formula

r(n) = ((n/2)! / ((n - 1) / 2)!) * [sqrt(Pi) if n is even otherwise 2/sqrt(Pi)].
a(n) = denominator(r(n)).
a(n) = A004730(n-1). - R. J. Mathar, Feb 10 2025
a(n) = A006882(n-1)/A095987(n). - R. J. Mathar, Feb 10 2025
Showing 1-10 of 12 results. Next