cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A193231 Blue code for n: in binary coding of a polynomial over GF(2), substitute x+1 for x (see Comments for precise definition).

Original entry on oeis.org

0, 1, 3, 2, 5, 4, 6, 7, 15, 14, 12, 13, 10, 11, 9, 8, 17, 16, 18, 19, 20, 21, 23, 22, 30, 31, 29, 28, 27, 26, 24, 25, 51, 50, 48, 49, 54, 55, 53, 52, 60, 61, 63, 62, 57, 56, 58, 59, 34, 35, 33, 32, 39, 38, 36, 37, 45, 44, 46, 47, 40, 41, 43, 42, 85, 84, 86
Offset: 0

Views

Author

Keywords

Comments

This is a self-inverse permutation of the nonnegative integers.
The function "substitute x+1 for x" on polynomials over GF(2) is completely multiplicative.
What is the density of fixed points in this sequence? Do we get a different answer if we look only at irreducible polynomials?
From Antti Karttunen, Dec 27 2013: (Start)
As what comes to the above question, the number of fixed points in range [2^(n-1),(2^n)-1] of the sequence is given by A131575(n). In range [0,0] there is one fixed point: 0, in range [1,1] there is also one: 1, in range [2,3] there are no fixed points, in range [4,7] there are two fixed points: 6 and 7, and so on. (Cf. also the C-code given in A118666.)
Similarly, the number of cycles in such ranges begins as 1, 1, 1, 3, 4, 10, 16, 36, 64, 136, ... which is A051437 shifted two steps right (prepended with 1's): Because the sequence is a self-inverse permutation, the number of its cycles in range [2^(n-1),(2^n)-1] is computed as: cycles(n) = (A011782(n)-number_of_fixedpoints(n))/2 + number_of_fixedpoints(n), which matches with the identity: A051437(n-2) = (A011782(n)-A131575(n))/2 + A131575(n), for n>=2.
In OEIS terms, the above comment about multiplicativeness can be rephrased as: a(A048720(x,y)) = A048720(a(x),a(y)) for all integers x, y >= 0. Here A048720(x,y) gives the product of carryless binary multiplication of x and y.
The permutation conjugates between Gray code and its inverse: A003188(n) = a(A006068(a(n))) and A006068(n) = a(A003188(a(n))) [cf. the identity 1.19-9d: gB = Bg^{-1} given on page 53 of fxtbook].
Because of the multiplicativity, the subset of irreducible (and respectively: composite) polynomials over GF(2) is closed under this permutation. Cf. the following mappings: a(A014580(n)) = A234750(n) and a(A091242(n)) = A234745(n).
(End)

Examples

			11, binary 1011, corresponds to polynomial x^3+x+1, substituting: (x+1)^3+(x+1)+1 = x^3+x^2+x+1 + x+1 + 1 = x^3+x^2+1, binary 1101 = decimal 13, so a(11) = 13.
From _Tilman Piesk_, Jun 26 2025: (Start)
The binary exponents of 11 are {0, 1, 3}, because 11 = 2^0 + 2^1 + 2^3.
a(11) = A001317(0) XOR A001317(1) XOR A001317(3) = 1 XOR 3 XOR 15 = 13. (End)
		

Crossrefs

Cf. A000069, A001969, A001317, A003987, A048720, A048724, A065621, A051437, A118666 (fixed points), A131575, A234022 (the number of 1-bits), A234023, A010060, A234745, A234750.
Similarly constructed permutation pairs: A003188/A006068, A135141/A227413, A232751/A232752, A233275/A233276, A233277/A233278, A233279/A233280.
Other permutations based on this (by conjugating, composing, etc): A234024, A234025/A234026, A234027, A234612, A234613, A234747, A234748, A244987, A245812, A245454.

Programs

  • Mathematica
    f[n_] := Which[0 <= # <= 1, #, EvenQ@ #, BitXor[2 #, #] &[f[#/2]], True, BitXor[#, 2 # + 1] &[f[(# - 1)/2]]] &@ Abs@ n; Table[f@ n, {n, 0, 66}] (* Michael De Vlieger, Feb 12 2016, after Robert G. Wilson v at A048724 and A065621 *)
  • PARI
    tox(n) = local(x=Mod(1,2)*X, xp=1, r); while(n>0,if(n%2,r+=xp);xp*=x;n\=2);r
    a(n)=subst(lift(subst(tox(n),X,X+1)),X,2)
    
  • PARI
    a(n)={local(x='x);subst(lift(Mod(1,2)*subst(Pol(binary(n),x),x,1+x)),x,2)};
    
  • Python
    def a065621(n): return n^(2*(n - (n&-n)))
    def a048724(n): return n^(2*n)
    l=[0, 1]
    for n in range(2, 101):
        if n%2==0: l.append(a048724(l[n//2]))
        else: l.append(a065621(1 + l[(n - 1)//2]))
    print(l) # Indranil Ghosh, Jun 04 2017
  • Scheme
    ;; with memoizing macro definec available in Antti Karttunen's IntSeq-library:
    (define (A193231 n) (let loop ((n n) (i 0) (s 0)) (cond ((zero? n) s) ((even? n) (loop (/ n 2) (+ 1 i) s)) (else (loop (/ (- n 1) 2) (+ 1 i) (A003987bi s (A001317 i))))))) ;; A003987bi implements binary XOR, A003987.
    ;; Antti Karttunen, Dec 27 2013
    
  • Scheme
    ;; With memoizing macro definec available in Antti Karttunen's IntSeq-library.
    ;; Alternative implementation, a recurrence based on entangling even & odd numbers with complementary pair A048724 and A065621:
    (definec (A193231 n) (cond ((< n 2) n) ((even? n) (A048724 (A193231 (/ n 2)))) (else (A065621 (+ (A193231 (/ (- n 1) 2)) 1)))))
    ;; Antti Karttunen, Dec 27 2013
    

Formula

From Antti Karttunen, Dec 27 2013: (Start)
a(0) = 0, and for any n = 2^a + 2^b + ... + 2^c, a(n) = A001317(a) XOR A001317(b) XOR ... XOR A001317(c), where XOR is bitwise XOR (A003987) and all the exponents a, b, ..., c are distinct, that is, they are the indices of 1-bits in the binary representation of n.
From above it follows, because all terms of A001317 are odd, that A000035(a(n)) = A010060(n) = A000035(a(2n)). Conversely, we also have A010060(a(n)) = A000035(n). Thus the permutation maps any even number to some evil number, A001969 (and vice versa), like it maps any odd number to some odious number, A000069 (and vice versa).
a(0)=0, a(1)=1, and for n>1, a(2n) = A048724(a(n)), a(2n+1) = A065621(1+a(n)). [A recurrence based on entangling even & odd numbers with the complementary pair A048724/A065621]
For all n, abs(a(2n)-a(2n+1)) = 1.
a(A000079(n)) = A001317(n).
(End)
It follows from the first paragraph above that a(A003987(n,k)) = A003987(a(n), a(k)), that is a(n XOR k) = a(n) XOR a(k). - Peter Munn, Nov 27 2019

A055938 Integers not generated by b(n) = b(floor(n/2)) + n (complement of A005187).

Original entry on oeis.org

2, 5, 6, 9, 12, 13, 14, 17, 20, 21, 24, 27, 28, 29, 30, 33, 36, 37, 40, 43, 44, 45, 48, 51, 52, 55, 58, 59, 60, 61, 62, 65, 68, 69, 72, 75, 76, 77, 80, 83, 84, 87, 90, 91, 92, 93, 96, 99, 100, 103, 106, 107, 108, 111, 114, 115, 118, 121, 122, 123, 124, 125, 126, 129
Offset: 1

Views

Author

Alford Arnold, Jul 21 2000

Keywords

Comments

Note that the lengths of the consecutive runs in a(n) form sequence A001511.
Integers that are not a sum of distinct integers of the form 2^k-1. - Vladeta Jovovic, Jan 24 2003
Also n! never ends in this many 0's in base 2 - Carl R. White, Jan 21 2008
A079559(a(n)) = 0. - Reinhard Zumkeller, Mar 18 2009
These numbers are dead-end points when trying to apply the iterated process depicted in A071542 in reverse, i.e. these are positive integers i such that there does not exist k with A000120(i+k)=k. See also comments at A179016. - Antti Karttunen, Oct 26 2012
Conjecture: a(n)=b(n) defined as b(1)=2, for n>1, b(n+1)=b(n)+1 if n is already in the sequence, b(n+1)=b(n)+3 otherwise. If so, then see Cloitre comment in A080578. - Ralf Stephan, Dec 27 2013
Numbers n for which A257265(m) = 0. - Reinhard Zumkeller, May 06 2015. Typo corrected by Antti Karttunen, Aug 08 2015
Numbers which have a 2 in their skew-binary representation (cf. A169683). - Allan C. Wechsler, Feb 28 2025

Examples

			Since A005187 begins 0 1 3 4 7 8 10 11 15 16 18 19 22 23 25 26 31... this sequence begins 2 5 6 9 12 13 14 17 20 21
		

Crossrefs

Complement of A005187. Setwise difference of A213713 and A213717.
Row 1 of arrays A257264, A256997 and also of A255557 (when prepended with 1). Equally: column 1 of A256995 and A255555.
Cf. also arrays A254105, A254107 and permutations A233276, A233278.
Left inverses: A234017, A256992.
Gives positions of zeros in A213714, A213723, A213724, A213731, A257265, positions of ones in A213725-A213727 and A256989, positions of nonzeros in A254110.
Cf. also A010061 (integers that are not a sum of distinct integers of the form 2^k+1).
Analogous sequence for factorial base number system: A219658, for Fibonacci number system: A219638, for base-3: A096346. Cf. also A136767-A136774.

Programs

  • Haskell
    a055938 n = a055938_list !! (n-1)
    a055938_list = concat $
       zipWith (\u v -> [u+1..v-1]) a005187_list $ tail a005187_list
    -- Reinhard Zumkeller, Nov 07 2011
    
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_Integer] := a[Floor[n/2]] + n; b = {}; Do[ b = Append[b, a[n]], {n, 0, 105}]; c =Table[n, {n, 0, 200}]; Complement[c, b]
    (* Second program: *)
    t = Table[IntegerExponent[(2n)!, 2], {n, 0, 100}]; Complement[Range[t // Last], t] (* Jean-François Alcover, Nov 15 2016 *)
  • PARI
    L=listcreate();for(n=1,1000,for(k=2*n-hammingweight(n)+1,2*n+1-hammingweight(n+1),listput(L,k)));Vec(L) \\ Ralf Stephan, Dec 27 2013
    
  • Python
    def a053644(n): return 0 if n==0 else 2**(len(bin(n)[2:]) - 1)
    def a043545(n):
        x=bin(n)[2:]
        return int(max(x)) - int(min(x))
    def a079559(n): return 1 if n==0 else a043545(n + 1)*a079559(n + 1 - a053644(n + 1))
    print([n for n in range(1, 201) if a079559(n)==0]) # Indranil Ghosh, Jun 11 2017, after the comment by Reinhard Zumkeller
  • Scheme
    ;; utilizing COMPLEMENT-macro from Antti Karttunen's IntSeq-library)
    (define A055938 (COMPLEMENT 1 A005187))
    ;; Antti Karttunen, Aug 08 2015
    

Formula

a(n) = A080578(n+1) - 2 = A080468(n+1) + 2*n (conjectured). - Ralf Stephan, Dec 27 2013
From Antti Karttunen, Aug 08 2015: (Start)
Other identities. For all n >= 1:
A234017(a(n)) = n.
A256992(a(n)) = n.
A257126(n) = a(n) - A005187(n).
(End)

Extensions

More terms from Robert G. Wilson v, Jul 24 2000

A233275 Permutation of nonnegative integers obtained by entangling complementary pair A005187 & A055938 with even and odd numbers.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 14, 10, 15, 11, 9, 8, 24, 25, 26, 28, 27, 29, 20, 30, 21, 22, 18, 31, 23, 19, 17, 16, 48, 49, 50, 52, 51, 53, 56, 54, 57, 58, 40, 55, 59, 41, 60, 42, 61, 44, 36, 43, 45, 62, 46, 37, 38, 34, 63, 47, 39, 35, 33, 32, 96, 97, 98, 100
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2013

Keywords

Comments

It seems that for all n, a(A000079(n)) = A003945(n).

Crossrefs

Inverse permutation: A233276.
Similarly constructed permutation pairs: A135141/A227413, A232751/A232752, A233277/A233278, A233279/A233280, A003188/A006068.

Formula

a(0)=0, a(1)=1, and thereafter, if A079559(n)=1, a(n) = 2*a(A213714(n)-1), else a(n) = 1+(2*a(A234017(n))).
a(n) = A054429(A233277(n)). [Follows from the definitions of these sequences]

A233277 Permutation of nonnegative integers obtained by entangling complementary pair A005187 & A055938 with odd and even numbers.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 11, 10, 9, 13, 8, 12, 14, 15, 23, 22, 21, 19, 20, 18, 27, 17, 26, 25, 29, 16, 24, 28, 30, 31, 47, 46, 45, 43, 44, 42, 39, 41, 38, 37, 55, 40, 36, 54, 35, 53, 34, 51, 59, 52, 50, 33, 49, 58, 57, 61, 32, 48, 56, 60, 62, 63, 95, 94, 93, 91
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2013

Keywords

Crossrefs

Inverse permutation: A233278.
Similarly constructed permutation pairs: A135141/A227413, A232751/A232752, A233275/A233276, A233279/A233280, A003188/A006068.

Formula

a(0)=0, a(1)=1, and thereafter, if A079559(n)=0, a(n) = 2*a(A234017(n)), else a(n) = 1+(2*a(A213714(n)-1)).
a(n) = A054429(A233275(n)). [Follows from the definitions of these sequences]

A233278 a(0)=0, a(1)=1, after which a(2n) = A055938(a(n)), a(2n+1) = A005187(1+a(n)).

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 12, 10, 9, 8, 13, 11, 14, 15, 27, 23, 21, 19, 20, 18, 17, 16, 28, 25, 24, 22, 29, 26, 30, 31, 58, 53, 48, 46, 44, 41, 40, 38, 43, 39, 37, 35, 36, 34, 33, 32, 59, 54, 52, 49, 51, 47, 45, 42, 60, 56, 55, 50, 61, 57, 62, 63, 121, 113, 108
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2013

Keywords

Comments

This permutation is obtained by "entangling" even and odd numbers with complementary pair A055938 & A005187, meaning that it can be viewed as a binary tree. Each child to the left is obtained by applying A055938(n) to the parent node containing n, and each child to the right is obtained as A005187(n+1):
0
|
...................1...................
2 3
5......../ \........4 6......../ \........7
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
12 10 9 8 13 11 14 15
27 23 21 19 20 18 17 16 28 25 24 22 29 26 30 31
etc.
For n >= 1, A256991(n) gives the contents of the immediate parent node of the node containing n, while A070939(n) gives the total distance to zero at the root from the node containing n, with A256478(n) telling how many of the terms encountered on that journey are terms of A005187 (including the penultimate 1 but not the final 0 in the count), while A256479(n) tells how many of them are terms of A055938.
Permutation A233276 gives the mirror image of the same tree.

Crossrefs

Inverse permutation: A233277.
Cf. also A070939 (the binary width of both n and a(n)).
Related arrays: A255555, A255557.
Similarly constructed permutation pairs: A005940/A156552, A135141/A227413, A232751/A232752, A233275/A233276, A233279/A233280, A003188/A006068.

Formula

a(0)=0, a(1)=1, and thereafter, a(2n) = A055938(a(n)), a(2n+1) = A005187(1+a(n)).
As a composition of related permutations:
a(n) = A233276(A054429(n)).

Extensions

Name changed and the illustration of binary tree added by Antti Karttunen, Apr 19 2015

A267112 Permutation of natural numbers: a(1) = 1; a(2n) = A087686(1+a(n)), a(2n+1) = A088359(a(n)), where A088359 and A087686 = numbers that occur only once (resp. more than once) in A004001.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 6, 8, 9, 12, 10, 15, 13, 14, 11, 16, 17, 21, 18, 27, 22, 24, 19, 31, 28, 29, 23, 30, 25, 26, 20, 32, 33, 38, 34, 48, 39, 42, 35, 58, 49, 51, 40, 54, 43, 45, 36, 63, 59, 60, 50, 61, 52, 53, 41, 62, 55, 56, 44, 57, 46, 47, 37, 64, 65, 71, 66, 86, 72, 76, 67, 106, 87, 90, 73, 96, 77, 80, 68, 121, 107, 109, 88
Offset: 1

Views

Author

Antti Karttunen, Jan 10 2016

Keywords

Comments

This sequence can be represented as a binary tree. Each left hand child is produced as A087686(1+n), and each right hand child as A088359(n), when their parent contains n:
|
...................1...................
2 3
4......../ \........5 7......../ \........6
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
8 9 12 10 15 13 14 11
16 17 21 18 27 22 24 19 31 28 29 23 30 25 26 20
etc.
The level k of the tree contains all numbers of binary width k, like many base-2 related permutations (A003188, A054429, etc). For a proof, see A267110, which gives the contents of each parent node (for node containing n).
A276442 shows the mirror-image of the same tree.

Crossrefs

Inverse: A267111.
Similar or related permutations: A003188, A054429, A276442, A233276, A233278, A276344, A276346, A276446.
Cf. also permutations A266411, A266412 and arrays A265901, A265903.

Formula

a(1) = 1; after which, a(2n) = A087686(1+a(n)), a(2n+1) = A088359(a(n)).
As a composition of other permutations:
a(n) = A276442(A054429(n)).
a(n) = A276344(A233276(n)).
a(n) = A276346(A233278(n)).
a(n) = A276446(A003188(n)).
Other identities. For all n >= 0:
a(2^n) = 2^n. [Follows from the properties (3) and (4) of A004001 given on page 227 of Kubo & Vakil paper.]
a(A000225(n)) = A006127(n), i.e., a((2^(n+1)) - 1) = 2^n + n. [Numbers at the right edge.]

A233280 Permutation of nonnegative integers: a(n) = A003188(A054429(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 11, 10, 14, 15, 13, 12, 16, 17, 19, 18, 22, 23, 21, 20, 28, 29, 31, 30, 26, 27, 25, 24, 32, 33, 35, 34, 38, 39, 37, 36, 44, 45, 47, 46, 42, 43, 41, 40, 56, 57, 59, 58, 62, 63, 61, 60, 52, 53, 55, 54, 50, 51, 49, 48, 64, 65, 67, 66
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2013

Keywords

Comments

This permutation transforms the enumeration system of positive irreducible fractions A071766/A229742 (HCS) into the enumeration system A007305/A047679 (Stern-Brocot), and the enumeration system A245325/A245326 into A162909/A162910 (Bird). - Yosu Yurramendi, Jun 09 2015

Crossrefs

Inverse permutation: A233279.
Similarly constructed permutation pairs: A003188/A006068, A135141/A227413, A232751/A232752, A233275/A233276, A233277/A233278, A193231 (self-inverse).

Programs

  • Python
    from sympy import floor
    def a003188(n): return n^(n>>1)
    def a054429(n): return 1 if n==1 else 2*a054429(floor(n/2)) + 1 - n%2
    def a(n): return 0 if n==0 else a003188(a054429(n)) # Indranil Ghosh, Jun 11 2017
  • R
    maxrow <- 8 # by choice
    a <- 1
    for(m in 0:maxrow) for(k in 0:(2^m-1)){
    a[2^(m+1)+    k] <- a[2^m+      k] + 2^m
    a[2^(m+1)+2^m+k] <- a[2^(m+1)-1-k] + 2^(m+1)
    }
    a
    # Yosu Yurramendi, Apr 05 2017
    
  • Scheme
    (define (A233280 n) (A003188 (A054429 n)))
    ;; Alternative version, based on entangling even & odd numbers with odious and evil numbers:
    (definec (A233280 n) (cond ((< n 2) n) ((even? n) (A000069 (+ 1 (A233280 (/ n 2))))) (else (A001969 (+ 1 (A233280 (/ (- n 1) 2)))))))
    

Formula

a(n) = A003188(A054429(n)).
a(n) = A063946(A003188(n)).
a(n) = A054429(A154436(n)).
a(0)=0, a(1)=1, and otherwise, a(2n) = A000069(1+a(n)), a(2n+1) = A001969(1+a(n)). [A recurrence based on entangling even & odd numbers with odious and evil numbers]
a(n) = A258746(A180201(n)) = A180201(A117120(n)), n > 0. - Yosu Yurramendi, Apr 10 2017

A256991 If A079559(n) = 1, a(n) = A213714(n) - 1, otherwise a(n) = A234017(n).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 5, 6, 7, 7, 8, 8, 9, 10, 9, 10, 11, 12, 11, 13, 14, 12, 13, 14, 15, 15, 16, 16, 17, 18, 17, 18, 19, 20, 19, 21, 22, 20, 21, 22, 23, 24, 23, 25, 26, 24, 25, 27, 28, 26, 29, 30, 27, 28, 29, 30, 31, 31, 32, 32, 33, 34, 33, 34, 35, 36, 35, 37, 38, 36, 37, 38, 39, 40, 39, 41, 42, 40, 41, 43, 44, 42
Offset: 1

Views

Author

Antti Karttunen, Apr 15 2015

Keywords

Comments

In other words, if n = A005187(k) for some k >= 1, then a(n) = k-1, otherwise it must be that n = A055938(h) for some h, and then a(n) = h.
In binary trees like A233276 and A233278, a(n) gives the contents at the parent node of node containing n, for any n >= 1.
When iterating a(n), a(a(n)), a(a(a(n))), and so on, A070939(n) = A256478(n) + A256479(n) = A257248(n) + A257249(n) gives the number of steps needed to reach zero, from any starting value n >= 1.

Crossrefs

Programs

Formula

If A079559(n) = 1, a(n) = A213714(n) - 1, otherwise a(n) = A234017(n).
a(n) = A256992(n) - A079559(n) = A213714(n) + A234017(n) - A079559(n).

A256478 a(0) = 0; and for n >= 1, if A079559(n) = 1, then a(n) = 1 + a(A213714(n)-1), otherwise a(n) = a(A234017(n)).

Original entry on oeis.org

0, 1, 1, 2, 2, 1, 2, 3, 3, 2, 2, 3, 1, 2, 3, 4, 4, 3, 3, 3, 2, 2, 4, 2, 3, 3, 4, 1, 2, 3, 4, 5, 5, 4, 4, 4, 3, 3, 4, 3, 3, 3, 5, 2, 2, 4, 3, 4, 2, 4, 5, 3, 3, 2, 3, 4, 4, 5, 1, 2, 3, 4, 5, 6, 6, 5, 5, 5, 4, 4, 5, 4, 4, 4, 5, 3, 3, 4, 4, 4, 3, 4, 6, 3, 3, 3, 3, 5, 5, 4, 2, 2, 4, 3, 5, 3, 4, 5, 6, 2, 4, 4, 4, 5, 3, 4, 3, 3, 2, 5, 5, 3, 6, 2, 4, 4, 3, 4, 5, 5, 6, 1, 2, 3, 4, 5, 6, 7, 7
Offset: 0

Views

Author

Antti Karttunen, Apr 15 2015

Keywords

Comments

a(n) tells how many nonzero terms of A005187 are encountered when traversing toward the root of binary tree A233276, starting from the node containing n. This count includes both n (in case it is a term of A005187) and 1 (but not 0). See also comments in A256479 and A256991.
The 1's (seem to) occur at positions given by A000325.

Crossrefs

Formula

a(0) = 0; and for n >= 1, if A079559(n) = 1, then a(n) = 1 + a(A213714(n)-1), otherwise a(n) = a(A234017(n)).
a(n) = A000120(A233277(n)). [Binary weight of A233277(n).]
Other identities and observations. For all n >= 1:
a(n) = 1 + A257248(n) = 1 + A080791(A233275(n)).
a(n) = A070939(n) - A256479(n).
a(n) >= A255559(n).

A279344 a(0) = 1, a(2n) = A005187(a(n)), a(2n+1) = A055938(a(n)).

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 8, 12, 7, 9, 10, 13, 15, 17, 22, 27, 11, 14, 16, 20, 18, 21, 23, 28, 26, 30, 32, 36, 41, 45, 50, 58, 19, 24, 25, 29, 31, 33, 38, 43, 34, 37, 39, 44, 42, 48, 53, 59, 49, 55, 56, 61, 63, 65, 70, 75, 79, 84, 86, 92, 97, 103, 112, 121, 35, 40, 46, 51, 47, 52, 54, 60, 57, 62, 64, 68, 73, 77, 82, 90, 66, 69, 71, 76, 74, 80
Offset: 0

Views

Author

Antti Karttunen, Dec 10 2016

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
This sequence can be represented as a binary tree. Each left hand child is produced as A005187(n), and each right hand child as A055938(n), when the parent node contains n:
1
|
...................2...................
3 5
4......../ \........6 8......../ \........12
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 9 10 13 15 17 22 27
11 14 16 20 18 21 23 28 26 30 32 36 41 45 50 58
etc.

Crossrefs

Inverse: A279343.
Left edge: A256994.
Related or similar permutations: A005940, A054429, A233276, A256997, A279339, A279342, A279347.

Programs

Formula

a(0) = 1, after which, a(2n) = A005187(a(n)), a(2n+1) = A055938(a(n)).
As a composition of other permutations:
a(n) = A279342(A054429(n)).
a(n) = A279347(A279342(n)).
a(n) = A279339(A005940(1+n)).
Showing 1-10 of 15 results. Next