cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004151 Omit trailing zeros from n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 21, 22, 23, 24, 25, 26, 27, 28, 29, 3, 31, 32, 33, 34, 35, 36, 37, 38, 39, 4, 41, 42, 43, 44, 45, 46, 47, 48, 49, 5, 51, 52, 53, 54, 55, 56, 57, 58, 59, 6, 61, 62, 63, 64, 65, 66, 67, 68, 69, 7, 71, 72, 73, 74, 75, 76, 77, 78, 79, 8, 81, 82, 83, 84, 85, 86, 87, 88, 89, 9, 91, 92, 93, 94, 95, 96, 97, 98, 99, 1, 101, 102, 103, 104, 105, 106, 107, 108, 109, 11, 111, 112, 113, 114, 115, 116, 117, 118, 119, 12
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a004151 = until ((> 0) . (`mod` 10)) (`div` 10)
    -- Reinhard Zumkeller, Feb 01 2012
    
  • Mathematica
    Flatten[Table[n/Take[Intersection[Divisors[n], 10^Range[0, Floor[Log[10, n]]]], -1], {n, 120}]] (* Alonso del Arte, Feb 02 2012 *)
    Table[n/10^IntegerExponent[n,10],{n,120}] (* Harvey P. Dale, May 02 2018 *)
  • PARI
    a(n)=n/10^valuation(n,10) \\ Charles R Greathouse IV, Oct 31 2012
    
  • Python
    def A004151(n):
        a, b = divmod(n,10)
        while not b:
            n = a
            a, b = divmod(n,10)
        return n # Chai Wah Wu, Feb 20 2024

Formula

a(n) = a(n/10) if n mod 10 = 0, otherwise n. - Reinhard Zumkeller, Feb 02 2012
G.f. A(x) satisfies: A(x) = A(x^10) + x/(1 - x)^2 - 10*x^10/(1 - x^10)^2. - Ilya Gutkovskiy, Oct 27 2019
Sum_{k=1..n} a(k) ~ (5/11) * n^2. - Amiram Eldar, Nov 20 2022