A004151 Omit trailing zeros from n.
1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 21, 22, 23, 24, 25, 26, 27, 28, 29, 3, 31, 32, 33, 34, 35, 36, 37, 38, 39, 4, 41, 42, 43, 44, 45, 46, 47, 48, 49, 5, 51, 52, 53, 54, 55, 56, 57, 58, 59, 6, 61, 62, 63, 64, 65, 66, 67, 68, 69, 7, 71, 72, 73, 74, 75, 76, 77, 78, 79, 8, 81, 82, 83, 84, 85, 86, 87, 88, 89, 9, 91, 92, 93, 94, 95, 96, 97, 98, 99, 1, 101, 102, 103, 104, 105, 106, 107, 108, 109, 11, 111, 112, 113, 114, 115, 116, 117, 118, 119, 12
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a004151 = until ((> 0) . (`mod` 10)) (`div` 10) -- Reinhard Zumkeller, Feb 01 2012
-
Mathematica
Flatten[Table[n/Take[Intersection[Divisors[n], 10^Range[0, Floor[Log[10, n]]]], -1], {n, 120}]] (* Alonso del Arte, Feb 02 2012 *) Table[n/10^IntegerExponent[n,10],{n,120}] (* Harvey P. Dale, May 02 2018 *)
-
PARI
a(n)=n/10^valuation(n,10) \\ Charles R Greathouse IV, Oct 31 2012
-
Python
def A004151(n): a, b = divmod(n,10) while not b: n = a a, b = divmod(n,10) return n # Chai Wah Wu, Feb 20 2024
Formula
a(n) = a(n/10) if n mod 10 = 0, otherwise n. - Reinhard Zumkeller, Feb 02 2012
G.f. A(x) satisfies: A(x) = A(x^10) + x/(1 - x)^2 - 10*x^10/(1 - x^10)^2. - Ilya Gutkovskiy, Oct 27 2019
Sum_{k=1..n} a(k) ~ (5/11) * n^2. - Amiram Eldar, Nov 20 2022