cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004197 Triangle read by rows. T(n, k) = n - k if n - k < k, otherwise k.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 3, 2, 1, 0, 0, 1, 2, 3, 3, 2, 1, 0, 0, 1, 2, 3, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 0, 0, 1, 2
Offset: 0

Views

Author

Keywords

Comments

Table of min(x,y), where (x,y) = (0,0),(0,1),(1,0),(0,2),(1,1),(2,0),...
Highest power of 6 that divides A036561. - Fred Daniel Kline, May 29 2012
Triangle T(n,k) read by rows: T(n,k) = min(k,n-k). - Philippe Deléham, Feb 25 2014

Examples

			From _Philippe Deléham_, Feb 25 2014: (Start)
Top left corner of table:
  0 0 0 0
  0 1 1 1
  0 1 2 2
  0 1 2 3
Triangle T(n,k) begins:
  0;
  0, 0;
  0, 1, 0;
  0, 1, 1, 0;
  0, 1, 2, 1, 0;
  0, 1, 2, 2, 1, 0;
  0, 1, 2, 3, 2, 1, 0;
  0, 1, 2, 3, 3, 2, 1, 0;
  0, 1, 2, 3, 4, 3, 2, 1, 0;
  0, 1, 2, 3, 4, 4, 3, 2, 1, 0;
  0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0;
  0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0;
  0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0;
  0, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 0;
  0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0;
  0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0;
  ... (End)
		

Crossrefs

Similar to but strictly different from A087062 and A261684.
Row sums give A002620. - Reinhard Zumkeller, Jul 27 2005
Positions of zero are given in A117142. - Ridouane Oudra, Apr 30 2019

Programs

  • Haskell
    a004197 n k = a004197_tabl !! n !! k
    a004197_tabl = map a004197_row [0..]
    a004197_row n = hs ++ drop (1 - n `mod` 2) (reverse hs)
       where hs = [0..n `div` 2]
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Maple
    T := (n, k) -> if n - k < k then n - k else k fi:
    for n from 0 to 9 do seq(T(n, k), k=0..n) od; # Peter Luschny, May 07 2023
  • Mathematica
    Flatten[Table[IntegerExponent[2^(n - k) 3^k, 6], {n, 0, 20}, {k, 0, n}]] (* Fred Daniel Kline, May 29 2012 *)
  • PARI
    T(x,y)=min(x,y) \\ Charles R Greathouse IV, Feb 07 2017

Formula

a(n) = A003983(n) - 1.
G.f.: x*y/((1-x)*(1-y)*(1-x*y)). - Franklin T. Adams-Watters, Feb 06 2006
2^T(n,k) = A144464(n,k), 3^T(n,k) = A152714(n,k), 4^T(n,k) = A152716(n,k), 5^T(n,k) = A152717(n,k). - Philippe Deléham, Feb 25 2014
a(n) = (1/2)*(t - 1 - abs(t^2 - 2*n - 1)), where t = floor(sqrt(2*n+1)+1/2). - Ridouane Oudra, May 03 2019

Extensions

Mathematica program fixed by Harvey P. Dale, Nov 26 2020
Name edited by Peter Luschny, May 07 2023