cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004200 Continued fraction for Sum_{k>=0} 1/3^(2^k).

Original entry on oeis.org

0, 2, 5, 3, 3, 1, 3, 5, 3, 1, 5, 3, 1, 3, 3, 5, 3, 1, 5, 3, 3, 1, 3, 5, 1, 3, 5, 3, 1, 3, 3, 5, 3, 1, 5, 3, 3, 1, 3, 5, 3, 1, 5, 3, 1, 3, 3, 5, 1, 3, 5, 3, 3, 1, 3, 5, 1, 3, 5, 3, 1, 3, 3, 5, 3, 1, 5, 3, 3, 1, 3, 5, 3, 1, 5, 3, 1, 3, 3, 5, 3, 1, 5, 3, 3, 1, 3, 5, 1, 3, 5, 3, 1, 3, 3, 5, 1, 3, 5, 3, 3, 1, 3, 5, 3
Offset: 0

Views

Author

Keywords

Examples

			0.456942562477639661115491826... = 0 + 1/(2 + 1/(5 + 1/(3 + 1/(3 + ...)))).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007400, A078885 (decimal expansion).

Programs

  • Maple
    u := 3: v := 7: Buv := [u,1,[0,u-1,u+1]]: for k from 2 to v do n := nops(Buv[3]): Buv := [u,Buv[2]+1,[seq(Buv[3][i],i=1..n-1),Buv[3][n]+1,Buv[3][n]-1,seq(Buv[3][n-i],i=1..n-2)]] od: seq(Buv[3][i],i=1..2^v);# first 2^v terms of A004200 # Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Dec 02 2002
  • Mathematica
    ContinuedFraction[ NSum[1/3^(2^n), {n, 0, Infinity}, WorkingPrecision -> 105], 105] (* Jean-François Alcover, Jul 18 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 20000); x=suminf(n=0, 1/3^(2^n)); x=contfrac(x); for (n=1, 20001, write("b004200.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 10 2009

Formula

Recurrence: a(0)=0, a(1)=2, a(2)=5, a(16n+5)=a(16n+12)=a(32n+9)=a(32n+24)=1, a(8n+3)=a(8n+6)=a(16n+4)=a(16n+13)=a(32n+8)=a(32n+25)=3, a(8n+2)=a(8n+7)=5, a(16n)=a(8n), a(16n+1)=a(8n+1). - Ralf Stephan, May 17 2005

Extensions

Better description and more terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 19 2001