cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A078885 Decimal expansion of Sum {n>=0} 1/3^(2^n).

Original entry on oeis.org

4, 5, 6, 9, 4, 2, 5, 6, 2, 4, 7, 7, 6, 3, 9, 6, 6, 1, 1, 1, 5, 4, 9, 1, 8, 2, 6, 1, 6, 6, 9, 0, 3, 0, 3, 7, 9, 8, 9, 9, 4, 2, 5, 9, 9, 7, 1, 3, 8, 3, 1, 1, 9, 2, 0, 9, 1, 0, 5, 6, 8, 7, 4, 3, 0, 9, 9, 8, 2, 4, 1, 8, 2, 9, 9, 6, 9, 0, 0, 2, 9, 5, 1, 8, 8, 2, 5, 1, 5, 2, 6, 6, 8, 0, 6, 8, 7, 7, 5, 3, 3, 4, 5, 2, 5
Offset: 0

Views

Author

Robert G. Wilson v, Dec 11 2002

Keywords

Examples

			0.456942562477639661115491826166903037989942599713831192091056874309982...
		

Crossrefs

Cf. A004200 (continued fraction), A011764.

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/3^(2^n), {n, 0, Infinity}], 110]] [[1]]
  • PARI
    default(realprecision, 20080); x=suminf(n=0, 1/3^(2^n)); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b078885.txt", n, " ", d)); \\ Harry J. Smith, May 10 2009

Formula

Equals -Sum_{k>=1} mu(2*k)/(3^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

A006464 Continued fraction for Sum_{n>=0} 1/4^(2^n).

Original entry on oeis.org

0, 3, 6, 4, 4, 2, 4, 6, 4, 2, 6, 4, 2, 4, 4, 6, 4, 2, 6, 4, 4, 2, 4, 6, 2, 4, 6, 4, 2, 4, 4, 6, 4, 2, 6, 4, 4, 2, 4, 6, 4, 2, 6, 4, 2, 4, 4, 6, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 6, 4, 2, 4, 4, 6, 4, 2, 6, 4, 4, 2, 4, 6, 4, 2, 6, 4, 2, 4, 4, 6, 4, 2, 6, 4, 4, 2, 4, 6, 2, 4, 6, 4, 2, 4, 4, 6, 2, 4, 6, 4, 4, 2, 4, 6, 4
Offset: 0

Views

Author

Keywords

Comments

a(n)=A004200(n) if n=0; A004200(n)+1 if n>0 (according to case u=3, b=1 of Theorem 5 (of the reference) which states that: if B(u,infinity) = Sum_{n>=0} 1/u^(2^n) = [a0, a1, a2, ...] then B(u + b,infinity) = [a0, a1+b, a2+b, a3+b,... ] (u >= 3, b >= 0)).
The sum is equal to 0.316421509021893143708079...= A078585.
After computing the first 10^5 terms and dropping the first two (0 & 3), only the numbers 2, 4 & 6 occur. Further I found no two 0's in a row and no three 2's or three 1's in a row. - Robert G. Wilson v, Dec 01 2002

Examples

			0.316421509021893143708079737... = 0 + 1/(3 + 1/(6 + 1/(4 + 1/(4 + ...)))). - _Harry J. Smith_, May 11 2009
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    u := 4: v := 7: Buv := [u,1,[0,u-1,u+1]]: for k from 2 to v do n := nops(Buv[3]): Buv := [u,Buv[2]+1,[seq(Buv[3][i],i=1..n-1),Buv[3][n]+1,Buv[3][n]-1,seq(Buv[3][n-i],i=1..n-2)]] od:seq(Buv[3][i],i=1..2^v);# first 2^v terms of A006464, Antonio G. Astudillo (aft_astudillo(AT)hotmail.com), Dec 02 2002
  • Mathematica
    ContinuedFraction[ N[ Sum[1/4^(2^n), {n, 0, Infinity}], 1000]]
  • PARI
    { allocatemem(932245000); default(realprecision, 25000); x=suminf(n=0, 1/4^(2^n)); x=contfrac(x); for (n=1, 20001, write("b006464.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 11 2009

Extensions

Better description and more terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 19 2001

A076157 Continued fraction expansion for c=sum_{k>=0} 1/2^(k!).

Original entry on oeis.org

1, 3, 1, 3, 4, 4095, 1, 3, 3, 1, 3, 4722366482869645213695, 1, 2, 1, 3, 3, 1, 4095, 4, 3, 1, 3, 3121748550315992231381597229793166305748598142664971150859156959625371738819765620120306103063491971159826931121406622895447975679288285306290175
Offset: 1

Views

Author

Benoit Cloitre, Nov 02 2002

Keywords

Comments

Observation: if b(k) denotes the sequence of all elements of the continued fraction for c, b(k) = 4095 if k==6 or 19 (mod 24); b(k) = 4722366482869645213695 if k==12 or 37 (mod 48); .... If b(k) is not congruent to 5 (mod 10), it seems that b(k) = 1,2,3 or 4 only.
Conjecture: a(3*2^n) = -1 + 2^[(n+1)((n+2)!) ]. - Ralf Stephan, May 17 2005
The conjecture follows from the theorem in Shallit's paper. The continued fraction has a "folded" overall structure. - Georg Fischer, Aug 29 2022

Crossrefs

Programs

  • PARI
    {allocatemem(220000000);
    default(realprecision, 1000000);
    contfrac(suminf(k=0, 1/(2^(k!))))}

Formula

c=1.2656250596046447753906250000000000007... = A076187.

Extensions

More terms from Ralf Stephan, May 17 2005
b-file, a-file, PARI program, and corrected conjecture by Rick L. Shepherd, Jun 07 2013

A081771 Continued fraction for Sum_{k>=0} 1/3^(2^k-1).

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 2, 2, 1, 1, 1, 2, 3, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 3, 2, 1, 2, 2, 1, 1, 1, 2, 3, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 2, 2
Offset: 1

Views

Author

Benoit Cloitre, Apr 10 2003

Keywords

Comments

Contains only elements 1 <= a(n) <= 3. See Judnick, example 12.

Crossrefs

A088435 1/2 + half of the (n+1)-st component of the continued fraction expansion of sum(k>=1,1/3^(2^k)).

Original entry on oeis.org

3, 2, 2, 1, 2, 3, 2, 1, 3, 2, 1, 2, 2, 3, 2, 1, 3, 2, 2, 1, 2, 3, 1, 2, 3, 2, 1, 2, 2, 3, 2, 1, 3, 2, 2, 1, 2, 3, 2, 1, 3, 2, 1, 2, 2, 3, 1, 2, 3, 2, 2, 1, 2, 3, 1, 2, 3, 2, 1, 2, 2, 3, 2, 1, 3, 2, 2, 1, 2, 3, 2, 1, 3, 2, 1, 2, 2, 3, 2, 1, 3, 2, 2, 1, 2, 3, 1, 2, 3, 2, 1, 2, 2, 3, 1, 2, 3, 2, 2, 1, 2, 3, 2, 1, 3
Offset: 1

Views

Author

Benoit Cloitre, Nov 08 2003

Keywords

Comments

To construct the sequence use the rule : a(1)=3, then a(a(1)+a(2)+...+a(n)+1)=2+(-1)^n and fill in any undefined place with 2.

Examples

			Example to illustrate the comment : a(a(1)+1) = a(4) = 2+(-1)^1 = 1 and a(2), a(3) are undefined. The rule forces a(2) = a(3) = 2.
		

Crossrefs

Cf. A088431.

Formula

a(n) = (1/2) * (1+A004200(n+1)).
a(a(1)+a(2)+...+a(n)+1) = 2+(-1)^n.

A061678 Continued fraction for Sum_{n>=0} 1/3^(3^n).

Original entry on oeis.org

0, 2, 1, 2, 3, 26, 1, 2, 2, 1, 2, 19682, 1, 1, 1, 2, 2, 1, 26, 3, 2, 1, 2, 7625597484986, 1, 1, 1, 2, 3, 26, 1, 2, 2, 1, 1, 1, 19682, 2, 1, 2, 2, 1, 26, 3, 2, 1, 2, 443426488243037769948249630619149892802, 1, 1, 1, 2, 3, 26, 1, 2, 2, 1, 2, 19682
Offset: 0

Views

Author

Jason Earls, Jun 23 2001

Keywords

Comments

The continued fraction has a "folded" overall structure. Apart from a(0) and from the record values of the form 3^(3^k)-1 (k >= 0), the only terms are 1 and 3. This follows from the theorem in Shallit's paper. - Georg Fischer, Aug 29 2022

Examples

			0.370421175633926798495743189411...
		

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[Sum[1/3^(3^i), {i, 0, 5}]] (* Michael De Vlieger, Jul 01 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 8000); x=contfrac(suminf(n=0, 1/3^(3^n))); for (n=0, 382, write("b061678.txt", n, " ", x[n+1])) } \\ Harry J. Smith, Jul 26 2009

A384939 Maximum element in the continued fraction for (1/n) * Sum_{k>=0} 1/3^(2^k).

Original entry on oeis.org

5, 11, 17, 24, 29, 35, 42, 48, 53, 60, 66, 72, 77, 84, 90, 96, 102, 108, 114, 121, 126, 132, 139, 145, 151, 156, 163, 169, 175, 181, 187, 193, 200, 205, 211, 218, 224, 229, 235, 242, 248, 253, 260, 266, 272, 279, 284, 290, 297, 303, 308, 314, 321, 327, 332, 339, 345, 351, 357, 363, 369, 375, 381, 387, 393, 400, 406, 411, 418, 424, 430, 436, 442, 448, 454, 460, 466, 472, 479, 484, 326, 497, 503, 508, 515, 521, 527, 532, 539, 545, 551, 558, 563, 569, 576, 582, 587, 594, 600, 606
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 22 2025

Keywords

Crossrefs

Programs

  • Mathematica
    m = 10; terms = 100; t1 = ConstantArray[0, 2*terms]; t2 = ConstantArray[1, 2*terms]; Until[t1 == t2, m++; PrintTemporary["m=",m]; s = Sum[1/3^(2^k), {k, 0, m}]; t1 = t2; t2 = Table[Max[ContinuedFraction[s/n]], {n, 1, 2*terms}]]; Take[t2, terms]

A081772 Continued fraction for sum(k>=0,1/4^(2^k-1)).

Original entry on oeis.org

1, 3, 1, 3, 4, 3, 1, 3, 3, 1, 3, 3, 1, 2, 1, 3, 3, 1, 3, 4, 3, 1, 3, 3, 1, 2, 1, 3, 4, 3, 1, 3, 3, 1, 2, 1, 3, 3, 1, 3, 3, 1, 3, 4, 3, 1, 3, 3, 1, 2, 1, 3, 4, 3, 1, 3, 3, 1, 3, 3, 1, 2, 1, 3, 3, 1, 3, 4, 3, 1, 2, 1, 3, 3, 1, 3, 4, 3, 1, 3, 3, 1, 2, 1, 3, 3, 1, 3, 3, 1, 3, 4, 3, 1, 3, 3, 1, 2, 1, 3, 4, 3, 1, 3, 3
Offset: 1

Views

Author

Benoit Cloitre, Apr 10 2003

Keywords

Comments

Contains only elements 1<=a(n)<=4

Crossrefs

A081773 Continued fraction for sum(k>=0,1/5^(2^k-1)).

Original entry on oeis.org

1, 4, 1, 4, 5, 4, 1, 4, 4, 1, 4, 4, 1, 3, 1, 4, 4, 1, 4, 5, 4, 1, 4, 4, 1, 3, 1, 4, 5, 4, 1, 4, 4, 1, 3, 1, 4, 4, 1, 4, 4, 1, 4, 5, 4, 1, 4, 4, 1, 3, 1, 4, 5, 4, 1, 4, 4, 1, 4, 4, 1, 3, 1, 4, 4, 1, 4, 5, 4, 1, 3, 1, 4, 4, 1, 4, 5, 4, 1, 4, 4, 1, 3, 1, 4, 4, 1, 4, 4, 1, 4, 5, 4, 1, 4, 4, 1, 3, 1, 4, 5, 4, 1, 4, 4
Offset: 1

Views

Author

Benoit Cloitre, Apr 10 2003

Keywords

Comments

Contains only elements 1<=a(n)<=5 ( but 2 never occurs)

Crossrefs

Cf. A004200.

A081774 Continued fraction for sum(k>=0,1/6^(2^k-1)).

Original entry on oeis.org

1, 5, 1, 5, 6, 5, 1, 5, 5, 1, 5, 5, 1, 4, 1, 5, 5, 1, 5, 6, 5, 1, 5, 5, 1, 4, 1, 5, 6, 5, 1, 5, 5, 1, 4, 1, 5, 5, 1, 5, 5, 1, 5, 6, 5, 1, 5, 5, 1, 4, 1, 5, 6, 5, 1, 5, 5, 1, 5, 5, 1, 4, 1, 5, 5, 1, 5, 6, 5, 1, 4, 1, 5, 5, 1, 5, 6, 5, 1, 5, 5, 1, 4, 1, 5, 5, 1, 5, 5, 1, 5, 6, 5, 1, 5, 5, 1, 4, 1, 5, 6, 5, 1, 5, 5
Offset: 1

Views

Author

Benoit Cloitre, Apr 10 2003

Keywords

Comments

Contains only elements 1<=a(n)<=6 ( but 2 and 3 never occur)

Crossrefs

Cf. A004200.
Showing 1-10 of 14 results. Next