cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A061678 Continued fraction for Sum_{n>=0} 1/3^(3^n).

Original entry on oeis.org

0, 2, 1, 2, 3, 26, 1, 2, 2, 1, 2, 19682, 1, 1, 1, 2, 2, 1, 26, 3, 2, 1, 2, 7625597484986, 1, 1, 1, 2, 3, 26, 1, 2, 2, 1, 1, 1, 19682, 2, 1, 2, 2, 1, 26, 3, 2, 1, 2, 443426488243037769948249630619149892802, 1, 1, 1, 2, 3, 26, 1, 2, 2, 1, 2, 19682
Offset: 0

Views

Author

Jason Earls, Jun 23 2001

Keywords

Comments

The continued fraction has a "folded" overall structure. Apart from a(0) and from the record values of the form 3^(3^k)-1 (k >= 0), the only terms are 1 and 3. This follows from the theorem in Shallit's paper. - Georg Fischer, Aug 29 2022

Examples

			0.370421175633926798495743189411...
		

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[Sum[1/3^(3^i), {i, 0, 5}]] (* Michael De Vlieger, Jul 01 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 8000); x=contfrac(suminf(n=0, 1/3^(3^n))); for (n=0, 382, write("b061678.txt", n, " ", x[n+1])) } \\ Harry J. Smith, Jul 26 2009

A283874 The Pierce expansion of the number Sum_{k>=1} 1/3^((2^k) - 1).

Original entry on oeis.org

2, 3, 4, 9, 10, 81, 82, 6561, 6562, 43046721, 43046722, 1853020188851841, 1853020188851842, 3433683820292512484657849089281, 3433683820292512484657849089282, 11790184577738583171520872861412518665678211592275841109096961, 11790184577738583171520872861412518665678211592275841109096962
Offset: 0

Views

Author

Kutlwano Loeto, Mar 24 2017

Keywords

Comments

This sequence is the Pierce expansion of the number 3*s(3) - 1 = 0.370827687432918983346475478500709113969827799141493576... where s(u) = Sum_{k>=0} 1/u^(2^k) for u=3 has been considered by N. J. A. Sloane in A004200.
The continued fraction expansion of the number 3*s(3)-1 is essentially A081771.

Examples

			The Pierce expansion of 0.3708276874329189833 starts as 1/2 - 1/(2*3) + 1/(2*3*4) - 1/(2*3*4*9) + 1/(2*3*4*9*10) - 1/(2*3*4*9*10*81) + ...
		

Programs

  • Maple
    L:=[2]: for k from 0 to 6 do: L:=[op(L),3^(2^k),3^(2^k)+1]: od: print(L);
  • PARI
    a(n) = if (n==0, 2, if (n%2, 3^(2^((n-1)/2)), 3^(2^((n-2)/2))+1)); \\ Michel Marcus, Mar 31 2017

Formula

a(0) = 2, a(2k+1) = 3^(2^k), a(2k+2) = 3^(2^k) + 1, k >= 0.
Showing 1-2 of 2 results.