A004201 Accept one, reject one, accept two, reject two, ...
1, 3, 4, 7, 8, 9, 13, 14, 15, 16, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 36, 43, 44, 45, 46, 47, 48, 49, 57, 58, 59, 60, 61, 62, 63, 64, 73, 74, 75, 76, 77, 78, 79, 80, 81, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 133, 134, 135
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a004201 n = a004201_list !! (n-1) a004201_list = f 1 [1..] where f k xs = us ++ f (k + 1) (drop (k) vs) where (us, vs) = splitAt k xs -- Reinhard Zumkeller, Jun 20 2015, Feb 12 2011
-
Mathematica
f[x_]:=Module[{c=1-x+x^2},Range[c,c+x-1]]; Flatten[Array[f,20]] (* Harvey P. Dale, Jul 31 2012 *)
-
PARI
A004201(n)=n+(n=(sqrtint(8*n-7)+1)\2)*(n-1)\2 \\ M. F. Hasler, Feb 13 2011
-
Python
from math import comb, isqrt def A004201(n): return n+comb((m:=isqrt(k:=n<<1))+(k>m*(m+1)),2) # Chai Wah Wu, Nov 09 2024
Formula
a(n) = A061885(n-1)+1. - Franklin T. Adams-Watters, Jul 05 2009
a(n+1) - a(n) = A130296(n+1). - Reinhard Zumkeller, Jul 16 2008
a(A000217(n)) = n^2. - Reinhard Zumkeller, Feb 12 2011
a(n) = n + t(t+1)/2, where t = floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 13 2012
a(n) = (2*n - r + r^2)/2, where r = round(sqrt(2*n)). - Wesley Ivan Hurt, Sep 20 2021
Comments