cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004201 Accept one, reject one, accept two, reject two, ...

Original entry on oeis.org

1, 3, 4, 7, 8, 9, 13, 14, 15, 16, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 36, 43, 44, 45, 46, 47, 48, 49, 57, 58, 59, 60, 61, 62, 63, 64, 73, 74, 75, 76, 77, 78, 79, 80, 81, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 133, 134, 135
Offset: 1

Views

Author

Alexander Stasinski

Keywords

Comments

a(n) are the numbers satisfying m - 0.5 < sqrt(a(n)) <= m for some positive integer m. - Floor van Lamoen, Jul 24 2001
Lower s(n)-Wythoff sequence (as defined in A184117) associated to s(n) = A002024(n) = floor(1/2+sqrt(2n)), with complement (upper s(n)-Wythoff sequence) in A004202.

Crossrefs

Programs

  • Haskell
    a004201 n = a004201_list !! (n-1)
    a004201_list = f 1 [1..] where
       f k xs = us ++ f (k + 1) (drop (k) vs) where (us, vs) = splitAt k xs
    -- Reinhard Zumkeller, Jun 20 2015, Feb 12 2011
    
  • Mathematica
    f[x_]:=Module[{c=1-x+x^2},Range[c,c+x-1]]; Flatten[Array[f,20]] (* Harvey P. Dale, Jul 31 2012 *)
  • PARI
    A004201(n)=n+(n=(sqrtint(8*n-7)+1)\2)*(n-1)\2  \\ M. F. Hasler, Feb 13 2011
    
  • Python
    from math import comb, isqrt
    def A004201(n): return n+comb((m:=isqrt(k:=n<<1))+(k>m*(m+1)),2) # Chai Wah Wu, Nov 09 2024

Formula

a(n) = A061885(n-1)+1. - Franklin T. Adams-Watters, Jul 05 2009
a(n+1) - a(n) = A130296(n+1). - Reinhard Zumkeller, Jul 16 2008
a(A000217(n)) = n^2. - Reinhard Zumkeller, Feb 12 2011
a(n) = A004202(n)-A002024(n). - M. F. Hasler, Feb 13 2011
a(n) = n+A000217(A003056(n-1)) = n+A000217(A002024(n)-1). - M. F. Hasler, Feb 13 2011
a(n) = n + t(t+1)/2, where t = floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 13 2012
a(n) = (2*n - r + r^2)/2, where r = round(sqrt(2*n)). - Wesley Ivan Hurt, Sep 20 2021