cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A206524 By definition, the sequences A004210, A206522 and A206523 are disjoint; the present sequence gives the complement of their union.

Original entry on oeis.org

6, 14, 16, 36, 50, 53, 54, 56, 57, 63, 65, 74, 77, 78, 81, 84, 86, 88, 95, 96, 101, 102, 107, 109, 113, 115, 116, 127, 132, 134, 136, 137, 141, 142, 148, 150, 151, 154, 155, 163, 166, 168, 173, 177, 180, 181, 182, 185, 188, 192, 196, 197, 200, 207, 209, 213, 216, 218, 221, 222, 223, 224, 225, 226, 229, 231, 234, 237, 239, 240, 241, 243, 244, 247, 254
Offset: 1

Views

Author

N. J. A. Sloane, Feb 08 2012

Keywords

Crossrefs

A206522 The pairwise differences of the terms of A004210.

Original entry on oeis.org

2, 5, 7, 10, 12, 13, 15, 17, 20, 22, 23, 24, 25, 27, 28, 29, 32, 34, 35, 37, 39, 40, 41, 42, 45, 47, 49, 52, 55, 58, 59, 60, 62, 64, 66, 69, 71, 72, 76, 79, 80, 82, 83, 87, 89, 92, 94, 99, 100, 103, 104, 105, 106, 111, 112, 114, 117, 118, 119, 121, 124, 126, 128, 129, 131, 135, 138, 139, 143, 144, 145, 146, 147, 149, 153, 156, 158, 159, 160, 167, 170, 171, 172, 174, 175
Offset: 1

Views

Author

N. J. A. Sloane, Feb 08 2012

Keywords

Crossrefs

A206523 The pairwise sums of the terms of A004210.

Original entry on oeis.org

4, 9, 11, 19, 21, 26, 31, 33, 38, 44, 46, 48, 51, 61, 68, 70, 73, 75, 85, 91, 93, 97, 98, 108, 110, 120, 123, 125, 130, 133, 140, 152, 157, 162, 164, 165, 169, 179, 189, 191, 203, 204, 205, 210, 212, 220, 228, 232, 245, 251, 261, 263, 268, 269, 278, 283, 290, 292, 303, 306, 308, 313, 323, 324, 327, 335, 348, 350, 363, 372, 382, 389, 391, 395, 396, 406, 417, 418, 419, 421
Offset: 1

Views

Author

N. J. A. Sloane, Feb 08 2012

Keywords

Crossrefs

A126428 a(1) = 1; for n > 1, a(n) = smallest number > a(n-1) such that pairwise sums and (absolute) differences of distinct elements are all distinct.

Original entry on oeis.org

1, 2, 6, 12, 21, 37, 58, 84, 112, 129, 173, 213, 266, 307, 373, 446, 513, 589, 639, 829, 916, 1061, 1209, 1297, 1429, 1461, 1626, 1783, 1964, 2220, 2576, 2653, 2875, 3064, 3307, 3605, 3889, 4228, 4332, 4412, 4658, 5337, 5618, 5647, 6281, 6511, 7001, 7388
Offset: 1

Views

Author

Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Mar 11 2007, Jul 27 2007

Keywords

Examples

			a(1) = 1, a(2) = 2; n = 3: k = 3, k-a(2) = 1 = a(2)-a(1), so a(3) > 3; k = 4: k-a(1) = 3 = a(1)+a(2), so a(3) > 4; k = 5: k-a(2) = 3 = a(1)+a(2), so a(3) > 5; k=6: k-a(1) = 5, k-a(2) = 4, k+a(1) = 7, k+a(2) = 8, a(2)-a(1) = 1, a(2)+a(1) = 3 are all distinct, hence a(3) = 6.
		

Crossrefs

Cf. A005282 (Mian-Chowla sequence).

Programs

  • Haskell
    import Data.List (intersect)
    a126428 n = a126428_list !! (n-1)
    a126428_list =  magics 1 [] [] where
       magics :: Integer -> [Integer] -> [Integer] -> [Integer]
       magics n ms tests
          | tests `intersect` nMinus == [] && tests `intersect` nPlus == []
          = n : magics (n+1) (n:ms) (nMinus ++ nPlus ++ tests)
          | otherwise
          = magics (n+1) ms tests
          where nMinus = map (n -) ms
                nPlus  = map (n +) ms
    -- magics is the generator for a004210_list, cf. A004210, magic integers.
    -- Reinhard Zumkeller, Mar 03 2011
  • PARI
    {m=48; u=[]; s=Set(); k=0; for(n=1, m, b=1; while(b, b=0; k++; j=0; while(!b&&j<#u, j++; if(setsearch(s, k-u[j])||setsearch(s, k+u[j]), b=1))); print1(k, ","); if(n
    				

Extensions

Edited and extended by Klaus Brockhaus, Sep 05 2007
Showing 1-4 of 4 results.