cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A004210 "Magic" integers: a(n+1) is the smallest integer m such that there is no overlap between the sets {m, m-a(i), m+a(i): 1 <= i <= n} and {a(i), a(i)-a(j), a(i)+a(j): 1 <= j < i <= n}.

Original entry on oeis.org

1, 3, 8, 18, 30, 43, 67, 90, 122, 161, 202, 260, 305, 388, 416, 450, 555, 624, 730, 750, 983, 1059, 1159, 1330, 1528, 1645, 1774, 1921, 2140, 2289, 2580, 2632, 2881, 3158, 3304, 3510, 3745, 4086, 4563, 4741, 4928, 5052, 5407, 5864, 6242, 6528, 6739, 7253
Offset: 1

Views

Author

N. J. A. Sloane, following a suggestion from B. G. DeBoer, Dec 15 1978

Keywords

Comments

The definition implies that the sets {a(i)} (A004210), {a(i)-a(j), j < i} (A206522) and {a(i)+a(j), j < i} (A206523) are disjoint. A206524 gives the complement of their union.

References

  • R. A. Bates, E. Riccomagno, R. Schwabe, H. P. Wynn, Lattices and dual lattices in optimal experimental design for Fourier models, Computational Statistics & Data Analysis Volume 28, Issue 3, 4 September 1998, Pages 283-296. See page 293.
  • D. R. Hofstadter, "Goedel, Escher, Bach: An Eternal Golden Braid", Basic Books Incorporated, p. 73
  • P. Mark Kayll, Well-spread sequences and edge-labelings with constant Hamiltonian weight, Disc. Math. & Theor. Comp. Sci 6 2 (2004) 401-408
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (intersect)
    a004210 n = a004210_list !! (n-1)
    a004210_list = magics 1 [0] [0] where
       magics :: Integer -> [Integer] -> [Integer] -> [Integer]
       magics n ms tests
          | tests `intersect` nMinus == [] && tests `intersect` nPlus == []
          = n : magics (n+1) (n:ms) (nMinus ++ nPlus ++ tests)
          | otherwise
          = magics (n+1) ms tests
          where nMinus = map (n -) ms
                nPlus  = map (n +) ms
    -- magics works also as generator for a126428_list, cf. A126428.
    -- Reinhard Zumkeller, Mar 03 2011
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Module[{pairs = Flatten[ Table[{a[j] + a[k], a[k] - a[j]}, {j, 1, n-1}, {k, j+1, n-1}]], an = a[n-1] + 1}, While[ True, If[ Intersection[ Join[ Array[a, n-1], pairs], Prepend[ Flatten[ Table[{a[j] + an, an - a[j]}, {j, 1, n-1}]], an]] == {}, Break[], an++]]; an]; Table[a[n], {n, 1, 48}] (* Jean-François Alcover, Nov 10 2011 *)

Formula

a(n+1) = min{ k | k and k +- a(i) are not equal to a(i) or a(i)-a(j) or a(i)+a(j) for any n+1 > i > j > 0}. [Corrected by T. D. Noe, Sep 08 2008]

Extensions

Additional comments from Robert M. Burton, Jr. (bob(AT)oregonstate.edu), Feb 20 2005
More terms from Joshua Zucker, May 04 2006
Edited by N. J. A. Sloane, Sep 06 2008 at the suggestion of R. J. Mathar
Edited by N. J. A. Sloane, Feb 08 2012

A126435 Primes of the form n^7-n-1.

Original entry on oeis.org

2097143, 1801088519, 21869999969, 42618442943, 78364164059, 137231006639, 194754273839, 435817657169, 678223072799, 1174711139783, 1727094849479, 3938980639103, 4398046511039, 4902227890559, 6722988818363, 19203908986079
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Comments

All terms end in 3 or 9. - Robert Israel, Jul 22 2019

Crossrefs

Programs

  • Maple
    map(t -> t^7-t-1, select(t -> isprime(t^7-t-1), [$1..10^4])); # Robert Israel, Jul 22 2019
  • Mathematica
    k = 7; a = {}; Do[If[PrimeQ[x^k - x - 1], AppendTo[a, x^k - x - 1]], {x, 1, 100}]; a
    Select[Table[n^7-n-1,{n,80}],PrimeQ] (* Harvey P. Dale, Jun 20 2020 *)

A126437 Primes of the form k^8-k-1.

Original entry on oeis.org

1679609, 5764793, 99999989, 4294967279, 282429536453, 377801998307, 5352009260441, 16815125390579, 39062499999949, 72301961339081, 83733937890569, 281474976710591, 513798374428571, 1113034787454899
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    k = 8; a = {}; Do[If[PrimeQ[x^k - x - 1], AppendTo[a, x^k - x - 1]], {x, 1, 100}]; a
    Select[Table[k^8-k-1,{k,80}],PrimeQ] (* Harvey P. Dale, Nov 06 2021 *)

A126438 Primes of the form n^9-n-1.

Original entry on oeis.org

509, 262139, 10077689, 387420479, 68719476719, 118587876479, 1207269217769, 7625597484959, 10578455953379, 129961739795039, 327381934393919, 1628413597910399, 1953124999999949, 5416169448144839, 10077695999999939
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    k = 9; a = {}; Do[If[PrimeQ[x^k - x - 1], AppendTo[a, x^k - x - 1]], {x, 1, 100}]; a
    Select[Table[n^9-n-1,{n,100}],PrimeQ] (* Harvey P. Dale, Mar 09 2016 *)

A126439 Least prime of the form x^n-x-1.

Original entry on oeis.org

5, 5, 13, 29, 61, 2097143, 1679609, 509, 1021, 8589934583, 4093, 67108859, 16381, 470184984569, 4294967291, 2218611106740436979, 68719476731, 1350851717672992079, 1048573, 10460353199, 4194301, 20013311644049280264138724244295359, 16777213, 108347059433883722041830239, 20282409603651670423947251285999, 58149737003040059690390159, 72057594037927931, 536870909, 999999999999999999999999999989
Offset: 2

Views

Author

Artur Jasinski, Dec 26 2006, Jan 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 2; While[ ! PrimeQ[k^n -k - 1], k++ ]; AppendTo[a, k^n - k - 1], {n, 2, 30}]; a (*Artur Jasinski*)
Showing 1-5 of 5 results.