A004214 Positive numbers that are not the sum of three nonzero squares.
1, 2, 4, 5, 7, 8, 10, 13, 15, 16, 20, 23, 25, 28, 31, 32, 37, 39, 40, 47, 52, 55, 58, 60, 63, 64, 71, 79, 80, 85, 87, 92, 95, 100, 103, 111, 112, 119, 124, 127, 128, 130, 135, 143, 148, 151, 156, 159, 160, 167, 175, 183, 188, 191, 199, 207, 208, 215, 220, 223, 231
Offset: 1
Examples
The smallest numbers that are the sums of 3 nonzero squares are 3=1+1+1, 6=1+1+4, 9=1+4+4, etc.
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- David S. Bettes, Letter to N. J. A. Sloane, Nov 05 1976.
- Index entries for sequences related to sums of squares
Programs
-
Haskell
a004214 n = a004214_list !! (n-1) a004214_list = filter ((== 0) . a025427) [1..] -- Reinhard Zumkeller, Feb 26 2015
-
Maple
gf := sum(sum(sum(q^(x^2+y^2+z^2), x=1..25), y=1..25), z=1..25): s := series(gf, q, 500): for n from 1 to 500 do if coeff(s, q, n)=0 then printf(`%d,`,n) fi:od:
-
Mathematica
f[n_] := Flatten[Position[Take[Rest[CoefficientList[Sum[x^(i^2), {i, n}]^3, x]], n^2], 0]];f[16] (* Ray Chandler, Dec 06 2006 *)
-
PARI
isA000408(n)={ local(a,b) ; a=1; while(a^2+1
A004214(n)={ return(! isA000408(n)) ; } n=1 ; for(an=1,20000, if(isA004214(an), print(n," ",an); n++)) \\ R. J. Mathar, Nov 23 2006
Extensions
More terms from James Sellers, Apr 20 2001
Name clarified by Wolfdieter Lang, Apr 04 2013
Comments