A004290 Least positive multiple of n that when written in base 10 uses only 0's and 1's.
1, 10, 111, 100, 10, 1110, 1001, 1000, 111111111, 10, 11, 11100, 1001, 10010, 1110, 10000, 11101, 1111111110, 11001, 100, 10101, 110, 110101, 111000, 100, 10010, 1101111111, 100100, 1101101, 1110, 111011, 100000, 111111, 111010
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..9998 (first 2000 terms from T. D. Noe [and Ed Pegg Link])
- Ed Pegg Jr., 'Binary' Puzzle.
- Eric M. Schmidt, Sage code to compute this sequence.
- Chai Wah Wu, Pigeonholes and repunits, Amer. Math. Monthly, 121 (2014), 529-533.
Programs
-
Haskell
a004290 0 = 0 a004290 n = head [x | x <- tail a007088_list, mod x n == 0] -- Reinhard Zumkeller, Jan 10 2012
-
Maple
f:= proc(n) local L,x,m,r,k,j; if n<2 then return n fi; for x from 2 to n-1 do L[0,x]:= 0 od: L[0,0]:= 1: L[0,1]:= 1; for m from 1 do if L[m-1,(-10^m) mod n] = 1 then break fi; L[m,0]:= 1; for k from 1 to n-1 do L[m,k]:= max(L[m-1,k],L[m-1,k-10^m mod n]) od; od; r:= 10^m; k:= -10^m mod n; for j from m-1 by -1 to 1 do if L[j-1,k] = 0 then r:= r + 10^j; k:= k - 10^j mod n; fi od; if k = 1 then r:= r + 1 fi; r end proc: seq(f(n),n=1..100); # Robert Israel, Feb 09 2016
-
Mathematica
a[n_] := For[k = 1, True, k++, b = FromDigits[ IntegerDigits[k, 2] ]; If[Mod[b, n] == 0, Return[b]]]; a[0] = 0; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Jun 14 2013, after Reinhard Zumkeller *) With[{c=Rest[Union[FromDigits/@Flatten[Table[Tuples[{1,0},i],{i,10}], 1]]]}, Join[{0},Flatten[ Table[ Select[c,Divisible[#,n]&,1],{n,40}]]]] (* Harvey P. Dale, Dec 07 2013 *)
-
PARI
a(n) = {if( n==0, return (0)); my(m = n); while (vecmax(digits(m)) != 1, m+=n); m;} \\ Michel Marcus, Feb 09 2016, May 27 2020
-
PARI
apply( {A004290(n)=for(k=1,2^n,(t=fromdigits(binary(k)))%n||return(t))}, [1..44]) \\ M. F. Hasler, Mar 04 2025
-
Python
def A004290(n): if n > 0: for i in range(1,2**n): x = int(bin(i)[2:]) if not x % n: return x return 0 # Chai Wah Wu, Dec 30 2014
Formula
a(n) = n*A079339(n). - Jonathan Sondow, Jun 15 2014
Extensions
Initial 0 deleted and offset corrected by N. J. A. Sloane, Jan 31 2024
Comments