cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004290 Least positive multiple of n that when written in base 10 uses only 0's and 1's.

Original entry on oeis.org

1, 10, 111, 100, 10, 1110, 1001, 1000, 111111111, 10, 11, 11100, 1001, 10010, 1110, 10000, 11101, 1111111110, 11001, 100, 10101, 110, 110101, 111000, 100, 10010, 1101111111, 100100, 1101101, 1110, 111011, 100000, 111111, 111010
Offset: 1

Views

Author

Keywords

Comments

It is easy to show that a(n) always exists and in fact has at most n digits [Wu, 2014]. - N. J. A. Sloane, Jun 13 2014
a(n) = min{A007088(k): k > 0 and A007088(k) mod n = 0}. - Reinhard Zumkeller, Jan 10 2012
a(10^k) = 10^k and a(10^k - 1) = (10^(9k) - 1) / 9 for all k. Is a(n) < a(10^k - 1) for all n < 10^k - 1? - David Radcliffe, Aug 01 2025

Crossrefs

Programs

  • Haskell
    a004290 0 = 0
    a004290 n = head [x | x <- tail a007088_list, mod x n == 0]
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Maple
    f:= proc(n)
    local L,x,m,r,k,j;
    if n<2 then return n fi;
    for x from 2 to n-1 do L[0,x]:= 0 od:
    L[0,0]:= 1: L[0,1]:= 1;
    for m from 1 do
       if L[m-1,(-10^m) mod n] = 1 then break fi;
       L[m,0]:= 1;
       for k from 1 to n-1 do
         L[m,k]:= max(L[m-1,k],L[m-1,k-10^m mod n])
       od;
    od;
    r:= 10^m; k:= -10^m mod n;
    for j from m-1 by -1 to 1 do
        if L[j-1,k] = 0 then
          r:= r + 10^j; k:= k - 10^j mod n;
        fi
    od;
    if k = 1 then r:= r + 1 fi;
    r
    end proc:
    seq(f(n),n=1..100); # Robert Israel, Feb 09 2016
  • Mathematica
    a[n_] := For[k = 1, True, k++, b = FromDigits[ IntegerDigits[k, 2] ]; If[Mod[b, n] == 0, Return[b]]]; a[0] = 0; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Jun 14 2013, after Reinhard Zumkeller *)
    With[{c=Rest[Union[FromDigits/@Flatten[Table[Tuples[{1,0},i],{i,10}], 1]]]}, Join[{0},Flatten[ Table[ Select[c,Divisible[#,n]&,1],{n,40}]]]] (* Harvey P. Dale, Dec 07 2013 *)
  • PARI
    a(n) = {if( n==0, return (0)); my(m = n); while (vecmax(digits(m)) != 1, m+=n); m;} \\ Michel Marcus, Feb 09 2016, May 27 2020
    
  • PARI
    apply( {A004290(n)=for(k=1,2^n,(t=fromdigits(binary(k)))%n||return(t))}, [1..44]) \\ M. F. Hasler, Mar 04 2025
  • Python
    def A004290(n):
        if n > 0:
            for i in range(1,2**n):
                x = int(bin(i)[2:])
                if not x % n:
                    return x
        return 0
    # Chai Wah Wu, Dec 30 2014
    

Formula

a(n) = n*A079339(n). - Jonathan Sondow, Jun 15 2014

Extensions

Initial 0 deleted and offset corrected by N. J. A. Sloane, Jan 31 2024