A004312 Binomial coefficient C(2n,n-6).
1, 14, 120, 816, 4845, 26334, 134596, 657800, 3108105, 14307150, 64512240, 286097760, 1251677700, 5414950296, 23206929840, 98672427616, 416714805914, 1749695026860, 7309837001104, 30405943383200, 125994627894135, 520341450264090, 2142582442263900, 8799226775309880
Offset: 6
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
Links
- Seiichi Manyama, Table of n, a(n) for n = 6..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjic, Two Enumerative Functions
- Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550, 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014), Article 14.3.5.
Programs
-
Magma
[ Binomial(2*n,n-6): n in [6..150] ]; // Vincenzo Librandi, Apr 13 2011
-
Mathematica
Table[Binomial[2*n, n-6], {n, 6, 30}] (* Amiram Eldar, Aug 27 2022 *)
-
PARI
a(n)=binomial(2*n,n-6) \\ Charles R Greathouse IV, Oct 23 2023
Formula
G.f.: ((1/(sqrt(1-4*x)*x)-(1-sqrt(1-4*x))/(2*x^2))*x)/((1-sqrt(1-4*x))/(2*x)-1)^7+6/x-35/x^2+56/x^3-36/x^4+10/x^5-1/x^6. - Vladimir Kruchinin, Aug 11 2015
-(n-6)*(n+6)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jan 24 2018
E.g.f.: BesselI(6,2*x) * exp(2*x). - Ilya Gutkovskiy, Jun 27 2019
From Amiram Eldar, Aug 27 2022: (Start)
Sum_{n>=6} 1/a(n) = 2*Pi/(9*sqrt(3)) + 1709/2520.
Sum_{n>=6} (-1)^n/a(n) = 16636*log(phi)/(5*sqrt(5)) - 1802033/2520, where phi is the golden ratio (A001622). (End)
Comments