cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004312 Binomial coefficient C(2n,n-6).

Original entry on oeis.org

1, 14, 120, 816, 4845, 26334, 134596, 657800, 3108105, 14307150, 64512240, 286097760, 1251677700, 5414950296, 23206929840, 98672427616, 416714805914, 1749695026860, 7309837001104, 30405943383200, 125994627894135, 520341450264090, 2142582442263900, 8799226775309880
Offset: 6

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch or cross the line x-y=6. - Herbert Kociemba, May 24 2004

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Diagonal 13 of triangle A100257.
Cf. A001622.

Programs

Formula

G.f.: ((1/(sqrt(1-4*x)*x)-(1-sqrt(1-4*x))/(2*x^2))*x)/((1-sqrt(1-4*x))/(2*x)-1)^7+6/x-35/x^2+56/x^3-36/x^4+10/x^5-1/x^6. - Vladimir Kruchinin, Aug 11 2015
-(n-6)*(n+6)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jan 24 2018
E.g.f.: BesselI(6,2*x) * exp(2*x). - Ilya Gutkovskiy, Jun 27 2019
From Amiram Eldar, Aug 27 2022: (Start)
Sum_{n>=6} 1/a(n) = 2*Pi/(9*sqrt(3)) + 1709/2520.
Sum_{n>=6} (-1)^n/a(n) = 16636*log(phi)/(5*sqrt(5)) - 1802033/2520, where phi is the golden ratio (A001622). (End)