A004432 Numbers that are the sum of 3 distinct nonzero squares.
14, 21, 26, 29, 30, 35, 38, 41, 42, 45, 46, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 69, 70, 74, 75, 77, 78, 81, 83, 84, 86, 89, 90, 91, 93, 94, 98, 101, 104, 105, 106, 107, 109, 110, 113, 114, 115, 116, 117, 118, 120, 121, 122, 125, 126, 129, 131, 133
Offset: 1
Examples
14 = 1^2 + 2^2 + 3^2; 62 = 1^2 + 5^2 + 6^2.
Links
Crossrefs
Programs
-
Haskell
a004432 n = a004432_list !! (n-1) a004432_list = filter (p 3 $ tail a000290_list) [1..] where p k (q:qs) m = k == 0 && m == 0 || q <= m && k >= 0 && (p (k - 1) qs (m - q) || p k qs m) -- Reinhard Zumkeller, Apr 22 2013
-
Mathematica
f[upto_]:=Module[{max=Floor[Sqrt[upto]]},Select[Union[Total/@ (Subsets[ Range[ max],{3}]^2)],#<=upto&]]; f[150] (* Harvey P. Dale, Mar 24 2011 *)
-
PARI
is_A004432(n)=for(x=1,sqrtint(n\3),for(y=x+1,sqrtint((n-1-x^2)\2),issquare(n-x^2-y^2)&return(1))) \\ M. F. Hasler, Feb 02 2013
Formula
A004432 = { x^2 + y^2 + z^2; 0 < x < y < z }.
Comments