A004438 Numbers that are not the sum of 5 distinct squares.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 52, 53, 56, 58, 59, 60, 61, 64, 67, 68, 69, 72, 73, 76, 77, 80, 83, 89, 92, 96, 97, 101, 104, 108, 112, 124, 128, 136, 188, 224
Offset: 1
Links
- Paul T. Bateman, Adolf J. Hildebrand and George B. Purdy, Sums of distinct squares, Acta Arith. 67 (1994), 349-380.
- E. M. Wright, The representation of a number as a sum of five or more squares, Quart. J. Math. Oxford Ser. 4 (1933), 37-51.
- Index entries for sequences related to sums of squares
Crossrefs
Cf. A120951.
Programs
-
Mathematica
nn=10000; t=Table[0,{nn}]; lim=Floor[Sqrt[nn]]; sq=Table[i^2, {i,0,lim}]; lim=lim+1; Do[n=sq[[i1]]+sq[[i2]]+sq[[i3]]+sq[[i4]]+sq[[i5]]; If[n<=nn, t[[n]]++ ], {i1,lim}, {i2,i1+1,lim}, {i3,i2+1,lim}, {i4,i3+1,lim}, {i5,i4+1,lim}]; Flatten[Position[t,0]] (* T. D. Noe, Jul 24 2006 *) j[{a_, b_, c_, d_, e_}] := If[0 <= a < b < c < d < e, a^2 + b^2 + c^2 + d^2 + e^2, False]; Union[ Complement[Range[500], DeleteCases[ Flatten[Map[j, PowersRepresentations[ #, 5, 2]] & /@ Range[500]], False]]] (* Ant King, Sep 30 2010 *)
Extensions
More terms from Franklin T. Adams-Watters, Jul 18 2006