A004488 Tersum n + n.
0, 2, 1, 6, 8, 7, 3, 5, 4, 18, 20, 19, 24, 26, 25, 21, 23, 22, 9, 11, 10, 15, 17, 16, 12, 14, 13, 54, 56, 55, 60, 62, 61, 57, 59, 58, 72, 74, 73, 78, 80, 79, 75, 77, 76, 63, 65, 64, 69, 71, 70, 66, 68, 67, 27, 29, 28, 33, 35, 34, 30, 32, 31, 45, 47, 46, 51
Offset: 0
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..59048 (first 6561 terms from Alois P. Heinz)
- Index entries for sequences related to carryless arithmetic
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Haskell
a004488 0 = 0 a004488 n = if d == 0 then 3 * a004488 n' else 3 * a004488 n' + 3 - d where (n', d) = divMod n 3 -- Reinhard Zumkeller, Mar 12 2014
-
Maple
a:= proc(n) local t, r, i; t, r:= n, 0; for i from 0 while t>0 do r:= r+3^i *irem(2*irem(t, 3, 't'), 3) od; r end: seq(a(n), n=0..80); # Alois P. Heinz, Sep 07 2011
-
Mathematica
a[n_] := FromDigits[Mod[3-IntegerDigits[n, 3], 3], 3]; Table[a[n], {n, 0, 66}] (* Jean-François Alcover, Mar 03 2014 *)
-
PARI
a(n) = my(b=3); fromdigits(apply(d->(b-d)%b, digits(n, b)), b); vector(67, i, a(i-1)) \\ Gheorghe Coserea, Apr 23 2018
-
Python
from sympy.ntheory.factor_ import digits def a(n): return int("".join([str((3 - i)%3) for i in digits(n, 3)[1:]]), 3) # Indranil Ghosh, Jun 06 2017
Formula
Tersum m + n: write m and n in base 3 and add mod 3 with no carries, e.g., 5 + 8 = "21" + "22" = "10" = 1.
a(n) = Sum(3-d(i)-3*0^d(i): n=Sum(d(i)*3^d(i): 0<=d(i)<3)). - Reinhard Zumkeller, Dec 19 2003
a(3*n) = 3*a(n), a(3*n+1) = 3*a(n)+2, a(3*n+2) = 3*a(n)+1. - Robert Israel, May 09 2014
Comments