cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004614 Numbers that are divisible only by primes congruent to 3 mod 4.

Original entry on oeis.org

1, 3, 7, 9, 11, 19, 21, 23, 27, 31, 33, 43, 47, 49, 57, 59, 63, 67, 69, 71, 77, 79, 81, 83, 93, 99, 103, 107, 121, 127, 129, 131, 133, 139, 141, 147, 151, 161, 163, 167, 171, 177, 179, 189, 191, 199, 201, 207, 209, 211, 213, 217, 223, 227, 231, 237, 239, 243, 249, 251
Offset: 1

Views

Author

Keywords

Comments

Numbers whose factorization as Gaussian integers is the same as their factorization as integers. - Franklin T. Adams-Watters, Oct 14 2005
Closed under multiplication. Primitive elements are the primes of form 4*k+3. - Gerry Martens, Jun 17 2020

Crossrefs

Cf. A004613.
Cf. A002145 (subsequence of primes).

Programs

  • Haskell
    a004614 n = a004614_list !! (n-1)
    a004614_list = filter (all (== 1) . map a079261 . a027748_row) [1..]
    -- Reinhard Zumkeller, Jan 07 2013
    
  • Magma
    [n: n in [1..300] | forall{d: d in PrimeDivisors(n) | d mod 4 eq 3}]; // Vincenzo Librandi, Aug 21 2012
    
  • Maple
    q:= n-> andmap(i-> irem(i[1], 4)=3, ifactors(n)[2]):
    select(q, [$1..500])[];  # Alois P. Heinz, Jan 13 2024
  • Mathematica
    ok[1] = True; ok[n_] := And @@ (Mod[#, 4] == 3 &) /@ FactorInteger[n][[All, 1]]; Select[Range[251], ok] (* Jean-François Alcover, May 05 2011 *)
    A004614 = Select[Range[251],Length@Reduce[s^2 + t^2 == s # && s # > t > 0, Integers] == 0 &] (* Gerry Martens, Jun 05 2020 *)
  • PARI
    for(n=1,1000,if(sumdiv(n,d,isprime(d)*if((d-3)%4,1,0))==0, print1(n,",")))
    
  • PARI
    forstep(n=1,999,2,for(j=1,#t=factor(n)[,1],t[j]%4==1 && next(2)); print1(n", ")) \\ M. F. Hasler, Feb 26 2008
    
  • PARI
    list(lim)=my(v=List([1]),cur,idx,newIdx); forprime(p=3,lim, if(p%4>1, listput(v,p))); for(i=2,#v, cur=v[i]; idx=1; while(v[idx]*cur <= lim, my(newidx=#v+1,t); for(j=idx, #v, t=cur*v[j]; if(t<=lim, listput(v, t))); idx=newidx)); Set(v) \\ Charles R Greathouse IV, Feb 06 2018
    
  • Python
    from itertools import count, islice
    from sympy import primefactors
    def A004614_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: n&1 and all(p&2 for p in primefactors(n>>(~n & n-1).bit_length())), count(max(startvalue,1)))
    A004614_list = list(islice(A004614_gen(),30)) # Chai Wah Wu, Aug 21 2024

Formula

Product(A079261(A027748(a(n),k)): k=1..A001221(a(n))) = 1. - Reinhard Zumkeller, Jan 07 2013