A004614 Numbers that are divisible only by primes congruent to 3 mod 4.
1, 3, 7, 9, 11, 19, 21, 23, 27, 31, 33, 43, 47, 49, 57, 59, 63, 67, 69, 71, 77, 79, 81, 83, 93, 99, 103, 107, 121, 127, 129, 131, 133, 139, 141, 147, 151, 161, 163, 167, 171, 177, 179, 189, 191, 199, 201, 207, 209, 211, 213, 217, 223, 227, 231, 237, 239, 243, 249, 251
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Gareth A. Jones and Alexander K. Zvonkin, A number-theoretic problem concerning pseudo-real Riemann surfaces, arXiv:2401.00270 [math.NT], 2023. See page 4.
Programs
-
Haskell
a004614 n = a004614_list !! (n-1) a004614_list = filter (all (== 1) . map a079261 . a027748_row) [1..] -- Reinhard Zumkeller, Jan 07 2013
-
Magma
[n: n in [1..300] | forall{d: d in PrimeDivisors(n) | d mod 4 eq 3}]; // Vincenzo Librandi, Aug 21 2012
-
Maple
q:= n-> andmap(i-> irem(i[1], 4)=3, ifactors(n)[2]): select(q, [$1..500])[]; # Alois P. Heinz, Jan 13 2024
-
Mathematica
ok[1] = True; ok[n_] := And @@ (Mod[#, 4] == 3 &) /@ FactorInteger[n][[All, 1]]; Select[Range[251], ok] (* Jean-François Alcover, May 05 2011 *) A004614 = Select[Range[251],Length@Reduce[s^2 + t^2 == s # && s # > t > 0, Integers] == 0 &] (* Gerry Martens, Jun 05 2020 *)
-
PARI
for(n=1,1000,if(sumdiv(n,d,isprime(d)*if((d-3)%4,1,0))==0, print1(n,",")))
-
PARI
forstep(n=1,999,2,for(j=1,#t=factor(n)[,1],t[j]%4==1 && next(2)); print1(n", ")) \\ M. F. Hasler, Feb 26 2008
-
PARI
list(lim)=my(v=List([1]),cur,idx,newIdx); forprime(p=3,lim, if(p%4>1, listput(v,p))); for(i=2,#v, cur=v[i]; idx=1; while(v[idx]*cur <= lim, my(newidx=#v+1,t); for(j=idx, #v, t=cur*v[j]; if(t<=lim, listput(v, t))); idx=newidx)); Set(v) \\ Charles R Greathouse IV, Feb 06 2018
-
Python
from itertools import count, islice from sympy import primefactors def A004614_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n: n&1 and all(p&2 for p in primefactors(n>>(~n & n-1).bit_length())), count(max(startvalue,1))) A004614_list = list(islice(A004614_gen(),30)) # Chai Wah Wu, Aug 21 2024
Comments