cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A031111 Write the (n+1)st Fibonacci number in base 9 and juxtapose.

Original entry on oeis.org

1, 2, 3, 5, 8, 1, 4, 2, 3, 3, 7, 6, 1, 1, 0, 8, 1, 7, 0, 2, 7, 8, 4, 5, 8, 7, 4, 7, 1, 3, 1, 6, 2, 1, 6, 4, 3, 4, 8, 1, 5, 6, 5, 5, 1, 0, 2, 4, 6, 1, 6, 0, 1, 2, 2, 6, 2, 5, 8, 4, 3, 2, 7, 1, 7, 0, 5, 4, 0, 1, 2, 3, 8, 2, 1, 2, 0, 4, 4, 6, 1, 3, 2, 8, 3, 8, 2, 5, 3, 3
Offset: 1

Views

Author

Keywords

Examples

			A004692(25..28) = 123821, 204461, 328382, 533853. - _Georg Fischer_, Jun 21 2019
		

Crossrefs

Cf. A004692 (Fibonacci numbers written in base 9).
Similar sequences in base 3 (A030363), 4 (A030413), 6 (A030604), 7 (A031027), 8 (A031067), 5 (A031269).

Programs

  • Magma
    &cat[Reverse(Intseq(Fibonacci(k),9)):k in [2..28]]; // Marius A. Burtea, Jun 21 2019
  • Mathematica
    Flatten[IntegerDigits[#,9]&/@Fibonacci[Range[30]]] (* Harvey P. Dale, Jan 13 2024 *)

Extensions

a(88)-a(90) corrected by Georg Fischer, Jun 21 2019

A214326 Square array read by antidiagonals in which T(n,b) gives the n-th Fibonacci number written in base b with n,b >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 11, 1, 1, 10, 111, 1, 1, 2, 11, 11111, 1, 1, 2, 10, 101, 11111111, 1, 1, 2, 3, 12, 1000, 1111111111111, 1, 1, 2, 3, 11, 22, 1101, 111111111111111111111, 1, 1, 2, 3, 10, 20, 111, 10101, 1111111111111111111111111111111111, 1, 1, 2, 3, 5, 13, 31, 210, 100010
Offset: 1

Views

Author

Alois P. Heinz, Jul 24 2012

Keywords

Comments

For b > 10, some terms cannot be properly notated using only decimal characters.

Examples

			Square array A(n,b) begins:
              1,    1,   1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
              1,    1,   1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
             11,   10,   2,  2,  2,  2,  2,  2,  2,  2,  2,  2, ...
            111,   11,  10,  3,  3,  3,  3,  3,  3,  3,  3,  3, ...
          11111,  101,  12, 11, 10,  5,  5,  5,  5,  5,  5,  5, ...
       11111111, 1000,  22, 20, 13, 12, 11, 10,  8,  8,  8,  8, ...
  1111111111111, 1101, 111, 31, 23, 21, 16, 15, 14, 13, 12, 11, ...
		

Crossrefs

Programs

  • Maple
    A:= proc(n, b) local f, l; f:= combinat[fibonacci](n);
          if b=1 then parse(cat(1$f))
        else l:= NULL;
             while f>0 do l:= irem(f, b, 'f'), l od;
             parse(cat(l))
          fi
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..10);
Showing 1-2 of 2 results.