A004745 Numbers whose binary expansion does not contain 001.
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 40, 42, 43, 44, 45, 46, 47, 48, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 80, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 104, 106, 107, 108, 109, 110
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
- Index entries for 2-automatic sequences.
Crossrefs
Programs
-
Haskell
a004745 n = a004745_list !! (n-1) a004745_list = filter f [0..] where f x = x < 4 || x `mod` 8 /= 1 && f (x `div` 2) -- Reinhard Zumkeller, Jul 01 2013
-
Mathematica
Select[Range[0, 110], ! StringContainsQ[IntegerString[#, 2], "001"] &] (* Amiram Eldar, Feb 13 2022 *) Select[Range[0,120],SequenceCount[IntegerDigits[#,2],{0,0,1}]==0&] (* Harvey P. Dale, Jul 05 2024 *)
-
PARI
is(n)=n=binary(n);for(i=4,#n,if(n[i]&&!n[i-1]&&!n[i-2], return(0))); 1 \\ Charles R Greathouse IV, Mar 29 2013
-
PARI
is(n)=while(n>8, if(bitand(n,7)==1, return(0)); n>>=1); 1 \\ Charles R Greathouse IV, Feb 11 2017
Formula
Sum_{n>=2} 1/a(n) = 5.808784664093998434778841785199192904637860758506854276321167162567685504669... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022