cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A003754 Numbers with no adjacent 0's in binary expansion.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 21, 22, 23, 26, 27, 29, 30, 31, 42, 43, 45, 46, 47, 53, 54, 55, 58, 59, 61, 62, 63, 85, 86, 87, 90, 91, 93, 94, 95, 106, 107, 109, 110, 111, 117, 118, 119, 122, 123, 125, 126, 127, 170, 171, 173, 174, 175, 181
Offset: 1

Views

Author

Keywords

Comments

Theorem (J.-P. Allouche, J. Shallit, G. Skordev): This sequence = A052499 - 1.
Ahnentafel numbers of ancestors contributing the X-chromosome to a female. A280873 gives the male inheritance. - Floris Strijbos, Jan 09 2017 [Equivalence with this sequence pointed out by John Blythe Dobson, May 09 2018]
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. This sequence lists all numbers k such that the k-th composition in standard order has no parts greater than two. See the corresponding example below. - Gus Wiseman, Apr 04 2020
The binary representation of a(n+1) has the same string of digits as the lazy Fibonacci (also known as dual Zeckendorf) representation of n that uses 0s and 1s. (The "+1" is essentially an adjustment for the offset of this sequence.) - Peter Munn, Sep 06 2022

Examples

			21 is in the sequence because 21 = 10101_2. '10101' has no '00' present in it. - _Indranil Ghosh_, Feb 11 2017
From _Gus Wiseman_, Apr 04 2020: (Start)
The terms together with the corresponding compositions begin:
    0: ()            30: (1,1,1,2)         90: (2,1,2,2)
    1: (1)           31: (1,1,1,1,1)       91: (2,1,2,1,1)
    2: (2)           42: (2,2,2)           93: (2,1,1,2,1)
    3: (1,1)         43: (2,2,1,1)         94: (2,1,1,1,2)
    5: (2,1)         45: (2,1,2,1)         95: (2,1,1,1,1,1)
    6: (1,2)         46: (2,1,1,2)        106: (1,2,2,2)
    7: (1,1,1)       47: (2,1,1,1,1)      107: (1,2,2,1,1)
   10: (2,2)         53: (1,2,2,1)        109: (1,2,1,2,1)
   11: (2,1,1)       54: (1,2,1,2)        110: (1,2,1,1,2)
   13: (1,2,1)       55: (1,2,1,1,1)      111: (1,2,1,1,1,1)
   14: (1,1,2)       58: (1,1,2,2)        117: (1,1,2,2,1)
   15: (1,1,1,1)     59: (1,1,2,1,1)      118: (1,1,2,1,2)
   21: (2,2,1)       61: (1,1,1,2,1)      119: (1,1,2,1,1,1)
   22: (2,1,2)       62: (1,1,1,1,2)      122: (1,1,1,2,2)
   23: (2,1,1,1)     63: (1,1,1,1,1,1)    123: (1,1,1,2,1,1)
   26: (1,2,2)       85: (2,2,2,1)        125: (1,1,1,1,2,1)
   27: (1,2,1,1)     86: (2,2,1,2)        126: (1,1,1,1,1,2)
   29: (1,1,2,1)     87: (2,2,1,1,1)      127: (1,1,1,1,1,1,1)
(End)
		

Crossrefs

A104326(n) = A007088(a(n)); A023416(a(n)) = A087116(a(n)); A107782(a(n)) = 0; A107345(a(n)) = 1; A107359(n) = a(n+1) - a(n); a(A001911(n)) = A000225(n); a(A000071(n+2)) = A000975(n). - Reinhard Zumkeller, May 25 2005
Cf. A003796 (no 000), A004745 (no 001), A004746 (no 010), A004744 (no 011), A004742 (no 101), A004743 (no 110), A003726 (no 111).
Complement of A004753.
Positions of numbers <= 2 in A333766 (see this and A066099 for other sequences about compositions in standard order).
Cf. A318928.

Programs

  • Haskell
    a003754 n = a003754_list !! (n-1)
    a003754_list = filter f [0..] where
       f x = x == 0 || x `mod` 4 > 0 && f (x `div` 2)
    -- Reinhard Zumkeller, Dec 07 2012, Oct 19 2011
    
  • Maple
    isA003754 := proc(n) local bdgs ; bdgs := convert(n,base,2) ; for i from 2 to nops(bdgs) do if op(i,bdgs)=0 and op(i-1,bdgs)= 0 then return false; end if; end do; return true; end proc:
    A003754 := proc(n) option remember; if n= 1 then 0; else for a from procname(n-1)+1 do if isA003754(a) then return a; end if; end do: end if; end proc:
    # R. J. Mathar, Oct 23 2010
  • Mathematica
    Select[ Range[0, 200], !MatchQ[ IntegerDigits[#, 2], {_, 0, 0, _}]&] (* Jean-François Alcover, Oct 25 2011 *)
    Select[Range[0,200],SequenceCount[IntegerDigits[#,2],{0,0}]==0&] (* The program uses the SequenceCount function from Mathematica version 10 *) (* Harvey P. Dale, May 21 2015 *)
  • PARI
    is(n)=n=bitor(n,n>>1)+1; n>>=valuation(n,2); n==1 \\ Charles R Greathouse IV, Feb 06 2017
    
  • Python
    i=0
    while i<=500:
        if "00" not in bin(i)[2:]:
            print(str(i), end=',')
        i+=1 # Indranil Ghosh, Feb 11 2017

Formula

Sum_{n>=2} 1/a(n) = 4.356588498070498826084131338899394678478395568880140707240875371925764128502... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022

Extensions

Removed "2" from the name, because, for example, one could argue that 10001 has 3 adjacent zeros, not 2. - Gus Wiseman, Apr 04 2020

A003726 Numbers with no 3 adjacent 1's in binary expansion.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53, 54, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 80, 81, 82
Offset: 1

Views

Author

Keywords

Comments

Positions of zeros in A014082. Could be called "tribbinary numbers" by analogy with A003714. - John Keith, Mar 07 2022
The sequence of Tribbinary numbers can be constructed by writing out the Tribonacci representations of nonnegative integers and then evaluating the result in binary. These numbers are similar to Fibbinary numbers A003714, Fibternary numbers A003726, and Tribternary numbers A356823. The number of Tribbinary numbers less than any power of two is a Tribonacci number. We can generate Tribbinary numbers recursively: Start by adding 0 and 1 to the sequence. Then, if x is a number in the sequence add 2x, 4x+1, and 8x+3 to the sequence. The n-th Tribbinary number is even if the n-th term of the Tribonacci word is a. Respectively, the n-th Tribbinary number is of the form 4x+1 if the n-th term of the Tribonacci word is b, and the n-th Tribbinary number is of the form 8x+3 if the n-th term of the Tribonacci word is c. Every nonnegative integer can be written as the sum of two Tribbinary numbers. Every number has a Tribbinary multiple. - Tanya Khovanova and PRIMES STEP Senior, Aug 30 2022

Crossrefs

Cf. A278038 (binary), A063037, A000073, A014082 (number of 111).
Cf. A004781 (complement).
Cf. A007088; A003796 (no 000), A004745 (no 001), A004746 (no 010), A004744 (no 011), A003754 (no 100), A004742 (no 101), A004743 (no 110).

Programs

  • Haskell
    a003726 n = a003726_list !! (n - 1)
    a003726_list = filter f [0..] where
       f x = x < 7 || (x `mod` 8) < 7 && f (x `div` 2)
    -- Reinhard Zumkeller, Jun 03 2012
    
  • Mathematica
    Select[Range[0, 82], SequenceCount[IntegerDigits[#, 2], {1, 1, 1}] == 0 &] (* Michael De Vlieger, Dec 23 2019 *)
  • PARI
    is(n)=!bitand(bitand(n, n<<1), n<<2) \\ Charles R Greathouse IV, Feb 11 2017

Formula

There are A000073(n+3) terms of this sequence with at most n bits. In particular, a(A000073(n+3)+1) = 2^n. - Charles R Greathouse IV, Oct 22 2021
Sum_{n>=2} 1/a(n) = 9.516857810319139410424631558212354346868048230248717360943194590798113163384... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022

A003796 Numbers with no 3 adjacent 0's in binary expansion.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92
Offset: 1

Views

Author

Keywords

Crossrefs

Complement of A004779.
Cf. A004745 (no 001), A004746 (no 010), A004744 (no 011), A003754 (no 100), A004742 (no 101), A004743 (no 110), A003726 (no 111).

Programs

  • Haskell
    a003796 n = a003796_list !! (n-1)
    a003796_list = filter f [0..] where
       f x  = x < 4 || x `mod` 8 /= 0 && f (x `div` 2)
    -- Reinhard Zumkeller, Jul 01 2013
    
  • Mathematica
    Select[Range[0,100],SequenceCount[IntegerDigits[#,2],{0,0,0}]==0&] (* The program uses the SequenceCount function from Mathematica version 10 *) (* Harvey P. Dale, Sep 12 2015 *)
  • PARI
    is(n)=while(n>7,if(bitand(n,7)==0,return(0));n>>=1); 1 \\ Charles R Greathouse IV, Feb 11 2017

Formula

Sum_{n>=2} 1/a(n) = 9.829256652701616366441622119246549956902006567009112470631751387637507184399... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022

A004742 Numbers whose binary expansion does not contain 101.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 15, 16, 17, 18, 19, 24, 25, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 48, 49, 50, 51, 56, 57, 60, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 76, 78, 79, 96, 97, 98, 99, 100, 102, 103, 112, 113, 114, 115, 120, 121, 124, 126, 127
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007088; A003796 (no 000), A004745 (no 001), A004746 (no 010), A004744 (no 011), A003754 (no 100), A004743 (no 110), A003726 (no 111).

Programs

  • Haskell
    a004742 n = a004742_list !! (n-1)
    a004742_list = filter f [0..] where
       f x  = x < 4 || x `mod` 8 /= 5 && f (x `div` 2)
    -- Reinhard Zumkeller, Jul 01 2013
  • Mathematica
    Select[Range[0, 130], !StringContainsQ[IntegerString[#, 2], "101"] &] (* Amiram Eldar, Feb 13 2022 *)
  • PARI
    is(n)=n=binary(n);for(i=3,#n,if(n[i]&&n[i-2]&&!n[i-1],return(0))); 1 \\ Charles R Greathouse IV, Mar 26 2013
    
  • PARI
    is(n)=while(n>4, if(bitand(n,7)==5, return(0)); n>>=1); 1 \\ Charles R Greathouse IV, Feb 11 2017
    
  • PARI
    is(n)=!bitand(bitand(n,n>>2),bitneg(n>>1)) \\ Charles R Greathouse IV, Oct 28 2021
    
  • PARI
    searchLE(S,x)=my(t=setsearch(S,x)); if(t,t,setsearch(S,x,1)-1); \\ finds last element <= x
    expand(~v, lim)=my(b=exponent(v[#v]+1), B=1<lim, listpop(~v));
    list(lim)=lim\=1; if(lim<5, return(if(lim<0,[],[0..lim]))); my(v=List([0..3])); for(b=3,exponent(lim+1), expand(~v, 2^b-1)); expand(~v, lim); Vec(v)
    

Formula

Sum_{n>=2} 1/a(n) = 6.198475910942069028389983717965787117743378665090593775808705963863146498248... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022

A004743 Numbers whose binary expansion does not contain 110.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 23, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 47, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 79, 80, 81, 82, 83, 84, 85, 87, 95, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007088; A003796 (no 000), A004745 (no 001), A004746 (no 010), A004744 (no 011), A003754 (no 100), A004742 (no 101), A003726 (no 111).

Programs

  • Haskell
    a004743 n = a004743_list !! (n-1)
    a004743_list = filter f [0..] where
       f x  = x < 4 || x `mod` 8 /= 6 && f (x `div` 2)
    -- Reinhard Zumkeller, Jul 01 2013
  • Mathematica
    Select[Range[0, 140], !StringContainsQ[IntegerString[#, 2], "110"] &] (* Amiram Eldar, Feb 13 2022 *)
    Select[Range[0,150],SequenceCount[IntegerDigits[#,2],{1,1,0}]==0&] (* Harvey P. Dale, Mar 14 2025 *)
  • PARI
    is(n)=n=binary(n);for(i=3,#n,if(!n[i]&&n[i-2]&&n[i-1],return(0))); 1 \\ Charles R Greathouse IV, Mar 26 2013
    
  • PARI
    is(n)=while(n>5, if(bitand(n,7)==6, return(0)); n>>=1); 1 \\ Charles R Greathouse IV, Feb 11 2017
    

Formula

Sum_{n>=2} 1/a(n) = 5.126608057149204485684180689064467269298250594297584060475240185531109866051... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022

A004744 Numbers whose binary expansion does not contain 011.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 48, 49, 50, 52, 53, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 72, 73, 74, 80, 81, 82, 84, 85, 96, 97, 98, 100, 101, 104, 105
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007088; A003796 (no 000), A004745 (no 001), A004746 (no 010), A003754 (no 100), A004742 (no 101), A004743 (no 110), A003726 (no 111).

Programs

  • Haskell
    a004744 n = a004744_list !! (n-1)
    a004744_list = filter f [0..] where
       f x  = x < 4 || x `mod` 8 /= 3 && f (x `div` 2)
    -- Reinhard Zumkeller, Jul 01 2013
  • Mathematica
    Select[Range[0,110],!MemberQ[Partition[IntegerDigits[#,2],3,1],{0,1,1}]&] (* Harvey P. Dale, Oct 15 2013 *)
  • PARI
    is(n)=n=binary(n);for(i=3,#n,if(n[i]&&n[i-1]&&!n[i-2], return(0)));1 \\ Charles R Greathouse IV, Mar 26 2013
    
  • PARI
    is(n)=while(n>10, if(bitand(n,7)==3, return(0)); n>>=1); 1 \\ Charles R Greathouse IV, Feb 11 2017
    

Formula

Sum_{n>=2} 1/a(n) = 6.084750966700965350831194838591995529232464122788387705746226526437263331240... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022

A004746 Numbers whose binary expansion does not contain 010.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 38, 39, 44, 45, 46, 47, 48, 49, 51, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 67, 70, 71, 76, 77, 78, 79, 88, 89, 91, 92, 93, 94, 95, 96, 97, 99, 102
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007088; A003796 (no 000), A004745 (no 001), A004744 (no 011), A003754 (no 100), A004742 (no 101), A004743 (no 110), A003726 (no 111).

Programs

  • Haskell
    a004746 n = a004746_list !! (n-1)
    a004746_list = filter f [0..] where
       f x  = x < 4 || x `mod` 8 /= 2 && f (x `div` 2)
    -- Reinhard Zumkeller, Jul 01 2013
  • Mathematica
    Select[Range[0,110],SequenceCount[IntegerDigits[#,2],{0,1,0}]==0&] (* The program uses the SequenceCount function from Mathematica version 10 *) (* Harvey P. Dale, Oct 19 2015 *)
  • PARI
    is(n)=n=binary(n);for(i=4,#n,if(!n[i]&&n[i-1]&&!n[i-2], return(0))); 1 \\ Charles R Greathouse IV, Mar 29 2013
    
  • PARI
    is(n)=while(n>9, if(bitand(n,7)==2, return(0)); n>>=1); 1 \\ Charles R Greathouse IV, Feb 11 2017
    

Formula

Sum_{n>=2} 1/a(n) = 7.338340181978485860731253930056466995425939377143636935044890325770833657631... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022
Showing 1-7 of 7 results.