A004759 Binary expansion starts 111.
7, 14, 15, 28, 29, 30, 31, 56, 57, 58, 59, 60, 61, 62, 63, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244
Offset: 1
Examples
30 in binary is 11110, so 30 is in sequence.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..4095
Crossrefs
Programs
-
Haskell
import Data.List (transpose) a004759 n = a004759_list !! (n-1) a004759_list = 7 : concat (transpose [zs, map (+ 1) zs]) where zs = map (* 2) a004759_list -- Reinhard Zumkeller, Dec 03 2015
-
Mathematica
w = {1, 1, 1}; Select[Range[5, 244], If[# < 2^(Length@ w - 1), True, Take[IntegerDigits[#, 2], Length@ w] == w] &] (* Michael De Vlieger, Aug 10 2016 *) Sort[FromDigits[#,2]&/@(Flatten[Table[Join[{1,1,1},#]&/@Tuples[{1,0},n],{n,0,5}],1])] (* Harvey P. Dale, Sep 01 2016 *)
-
PARI
a(n)=n+6*2^floor(log(n)/log(2))
-
Python
def A004759(n): return n+(3<
Chai Wah Wu, Jul 13 2022
Formula
a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + 6[n==0].
a(n+1) = min{m > a(n): A007814(m) = A007814(n+1) and A010060(m) = A010060(n+1)}. a(2^k) - a(2^k-1) = A103204(k+2), k >= 1. - Vladimir Shevelev, Apr 23 2009
a(2^m+k) = 7*2^m + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016
Extensions
Edited by Ralf Stephan, Oct 12 2003
Comments