A004760 List of numbers whose binary expansion does not begin 10.
0, 1, 3, 6, 7, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Vladimir Shevelev, Several results on sequences which are similar to the positive integers, arXiv:0904.2101 [math.NT], 2009. [_Vladimir Shevelev_, Apr 15 2009]
Crossrefs
Programs
-
Maple
0,1,seq(seq(3*2^d+x,x=0..2^d-1),d=0..6); # Robert Israel, Aug 03 2016
-
Mathematica
Select[Range@ 125, If[Length@ # < 2, #, Take[#, 2]] &@ IntegerDigits[#, 2] != {1, 0} &] (* Michael De Vlieger, Aug 02 2016 *)
-
PARI
is(n)=n<2 || binary(n)[2] \\ Charles R Greathouse IV, Sep 23 2012
-
PARI
print1("0, 1");for(i=0,5,for(n=3<Charles R Greathouse IV, Sep 23 2012
-
PARI
a(n) = if(n<=2,n-1, (n-=2) + 2<
Kevin Ryde, Jul 22 2022 -
Python
def A004760(n): return m+(1<
0 else n-1 # Chai Wah Wu, Jul 26 2023 -
R
maxrow <- 8 # by choice b01 <- 1 for(m in 0:maxrow){ b01 <- c(b01,rep(1,2^(m+1))); b01[2^(m+1):(2^(m+1)+2^m-1)] <- 0 } a <- which(b01 == 1) # Yosu Yurramendi, Mar 30 2017
Formula
For n > 0, a(n) = 3n - 2 - A006257(n-1). - Ralf Stephan, Sep 16 2003
a(0) = 0, a(1) = 1, for n > 0: a(2n) = 2*a(n) + 1, a(2n+1) = 2*a(n+1). - Philippe Deléham, Feb 29 2004
a(n+2) = min{m>a(n+1): A007814(m)=A007814(n)}; A010060(a(n+2)) = 1-A010060(n). - Vladimir Shevelev, Apr 27 2009
a(1)=0, a(2)=1, a(2^m+k+2) = 2^(m+1) + 2^m+k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Jul 30 2016
G.f.: x/(1-x)^2 + (x/(1-x))*Sum_{k>=0} 2^k*x^(2^k). - Robert Israel, Aug 03 2016
a(2^m+k) = A004761(2^m+k) + 2^m, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016
For n > 0, a(n+1) = n + 2^ceiling(log_2(n)) - 1. - Jacob Jona Fahlenkamp, Feb 01 2023
Extensions
Offset changed to 1, b-file corrected. - N. J. A. Sloane, Aug 07 2016
Comments