cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004760 List of numbers whose binary expansion does not begin 10.

Original entry on oeis.org

0, 1, 3, 6, 7, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122
Offset: 1

Views

Author

Keywords

Comments

For n >= 2 sequence {a(n+2)} is the minimal recursive such that A007814(a(n+2))=A007814(n). - Vladimir Shevelev, Apr 27 2009
A053645(a(n)) = n-1 for n > 0. - Reinhard Zumkeller, May 20 2009
a(n+1) is also the number of nodes in a complete binary tree with n nodes in the bottommost level. - Jacob Jona Fahlenkamp, Feb 01 2023

Crossrefs

Programs

  • Maple
    0,1,seq(seq(3*2^d+x,x=0..2^d-1),d=0..6); # Robert Israel, Aug 03 2016
  • Mathematica
    Select[Range@ 125, If[Length@ # < 2, #, Take[#, 2]] &@ IntegerDigits[#, 2] != {1, 0} &] (* Michael De Vlieger, Aug 02 2016 *)
  • PARI
    is(n)=n<2 || binary(n)[2] \\ Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    print1("0, 1");for(i=0,5,for(n=3<Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    a(n) = if(n<=2,n-1, (n-=2) + 2<Kevin Ryde, Jul 22 2022
    
  • Python
    def A004760(n): return m+(1<0 else n-1 # Chai Wah Wu, Jul 26 2023
  • R
    maxrow <- 8 # by choice
    b01 <- 1
    for(m in 0:maxrow){
      b01 <- c(b01,rep(1,2^(m+1))); b01[2^(m+1):(2^(m+1)+2^m-1)] <- 0
    }
    a <- which(b01 == 1)
    # Yosu Yurramendi, Mar 30 2017
    

Formula

For n > 0, a(n) = 3n - 2 - A006257(n-1). - Ralf Stephan, Sep 16 2003
a(0) = 0, a(1) = 1, for n > 0: a(2n) = 2*a(n) + 1, a(2n+1) = 2*a(n+1). - Philippe Deléham, Feb 29 2004
For n >= 3, A007814(a(n)) = A007814(n-2). - Vladimir Shevelev, Apr 15 2009
a(n+2) = min{m>a(n+1): A007814(m)=A007814(n)}; A010060(a(n+2)) = 1-A010060(n). - Vladimir Shevelev, Apr 27 2009
a(1)=0, a(2)=1, a(2^m+k+2) = 2^(m+1) + 2^m+k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Jul 30 2016
G.f.: x/(1-x)^2 + (x/(1-x))*Sum_{k>=0} 2^k*x^(2^k). - Robert Israel, Aug 03 2016
a(2^m+k) = A004761(2^m+k) + 2^m, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016
For n > 0, a(n+1) = n + 2^ceiling(log_2(n)) - 1. - Jacob Jona Fahlenkamp, Feb 01 2023

Extensions

Offset changed to 1, b-file corrected. - N. J. A. Sloane, Aug 07 2016