A004769 Numbers whose binary expansion ends in 011.
11, 19, 27, 35, 43, 51, 59, 67, 75, 83, 91, 99, 107, 115, 123, 131, 139, 147, 155, 163, 171, 179, 187, 195, 203, 211, 219, 227, 235, 243, 251, 259, 267, 275, 283, 291, 299, 307, 315, 323, 331, 339, 347, 355, 363, 371, 379, 387, 395, 403, 411, 419, 427, 435, 443, 451, 459, 467, 475, 483, 491
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Essentially same as A017101.
Programs
-
Magma
[8*n+11: n in [0..60]]; // Vincenzo Librandi, Jul 12 2011
-
Mathematica
Table[8*n+11, {n,0,60}] (* G. C. Greubel, Oct 13 2018 *) LinearRecurrence[{2,-1},{11,19},80] (* Harvey P. Dale, Aug 09 2023 *) Select[Range[10,500],Take[IntegerDigits[#,2],-3]=={0,1,1}&] (* or *) Rest[FromDigits[#,2]&/@(Join[#,{0,1,1}]&/@Tuples[{0,1},6])] (* Harvey P. Dale, Mar 23 2025 *)
-
PARI
a(n)=8*n+11 \\ Charles R Greathouse IV, Jul 11 2016
Formula
a(n) = 8*n + 11. - Vincenzo Librandi, Jul 12 2011
From G. C. Greubel, Oct 13 2018: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (11 - 3*x)/(1-x)^2.
E.g.f.: (8*x + 11)*exp(x). (End)