A004777 Numbers not congruent to 7 mod 8.
0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77
Offset: 1
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
Programs
-
Magma
[n-1+Floor((n-1)/7) : n in [1..100]]; // Wesley Ivan Hurt, Sep 11 2015
-
Magma
[n: n in [0..100] | not n mod 8 in [7]]; // Vincenzo Librandi, Sep 11 2015
-
Maple
A004777:=n->n-1+floor((n-1)/7): seq(A004777(n), n=1..100); # Wesley Ivan Hurt, Sep 11 2015
-
Mathematica
DeleteCases[Range[0,100],?(Mod[#,8]==7&)] (* _Harvey P. Dale, Apr 01 2011 *) Select[Range[0, 100], ! MemberQ[{7}, Mod[#, 8]] &] (* Vincenzo Librandi, Sep 12 2015 *)
-
PARI
A004777=n->(n-1)*8\7 \\ M. F. Hasler, Nov 02 2013
Formula
G.f.: x^2*(1+x+x^2+x^3+x^4+x^5+2*x^6) / ((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = floor((n-1)*8/7). - M. F. Hasler, Nov 02 2013
From Wesley Ivan Hurt, Sep 11 2015: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n>8.
a(n) = n - 1 + A132270(n). (End)
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = (56*n - 77 + (n mod 7) + ((n+1) mod 7) + ((n+2) mod 7) + ((n+3) mod 7) + ((n+4) mod 7) + ((n+5) mod 7) - 6*((n+6) mod 7))/49.
a(7k) = 8k-2, a(7k-1) = 8k-3, a(7k-2) = 8k-4, a(7k-3) = 8k-5, a(7k-4) = 8k-6, a(7k-5) = 8k-7, a(7k-6) = 8k-8. (End)
Extensions
Edited by N. J. A. Sloane Aug 31 2009 at the suggestion of R. J. Mathar.
Comments