A004799 Self-convolution of Lucas numbers.
1, 6, 17, 38, 80, 158, 303, 566, 1039, 1880, 3364, 5964, 10493, 18342, 31885, 55162, 95032, 163114, 279051, 475990, 809771, 1374316, 2327372, 3933528, 6636025, 11176518, 18794633, 31560206, 52925984, 88646390, 148303719, 247841654
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- É. Czabarka, R. Flórez, and L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
- Index entries for linear recurrences with constant coefficients, signature (2, 1, -2, -1).
Programs
-
Magma
[((5*n-4)*Lucas(n+1) + 2*Lucas(n))/5: n in [1..30]]; // G. C. Greubel, Dec 17 2017
-
Maple
a:= n-> (Matrix([[17, 6, 1, 0]]). Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [2, 1, -2, -1][i] else 0 fi)^n) [1,4]: seq (a(n), n=1..40); # Alois P. Heinz, Oct 28 2008
-
Mathematica
a[n_]:= ((5*n-4)*LucasL[n+1] + 2*LucasL[n])/5; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 12 2015 *)
-
PARI
Vec(x*((1+2*x)/(1-x-x^2))^2 + O(x^50)) \\ Altug Alkan, Nov 12 2015
-
Sage
[((5*n-4)*lucas_number2(n+1,1,-1) + 2*lucas_number2(n,1,-1))/5 for n in (1..30)] # G. C. Greubel, Apr 07 2021
Formula
From Wolfdieter Lang, Apr 24 2001: (Start)
a(n) = A060922(n, 1) (second column of Lucas triangle).
G.f.: x*((1+2*x)/(1-x-x^2))^2. (End)
Extensions
More terms from Alois P. Heinz, Oct 28 2008