cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004799 Self-convolution of Lucas numbers.

Original entry on oeis.org

1, 6, 17, 38, 80, 158, 303, 566, 1039, 1880, 3364, 5964, 10493, 18342, 31885, 55162, 95032, 163114, 279051, 475990, 809771, 1374316, 2327372, 3933528, 6636025, 11176518, 18794633, 31560206, 52925984, 88646390, 148303719, 247841654
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [((5*n-4)*Lucas(n+1) + 2*Lucas(n))/5: n in [1..30]]; // G. C. Greubel, Dec 17 2017
    
  • Maple
    a:= n-> (Matrix([[17, 6, 1, 0]]). Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [2, 1, -2, -1][i] else 0 fi)^n) [1,4]: seq (a(n), n=1..40); # Alois P. Heinz, Oct 28 2008
  • Mathematica
    a[n_]:= ((5*n-4)*LucasL[n+1] + 2*LucasL[n])/5; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 12 2015 *)
  • PARI
    Vec(x*((1+2*x)/(1-x-x^2))^2 + O(x^50)) \\ Altug Alkan, Nov 12 2015
    
  • Sage
    [((5*n-4)*lucas_number2(n+1,1,-1) + 2*lucas_number2(n,1,-1))/5 for n in (1..30)] # G. C. Greubel, Apr 07 2021

Formula

From Wolfdieter Lang, Apr 24 2001: (Start)
a(n) = A060922(n, 1) (second column of Lucas triangle).
a(n) = ((-4 + 5*n)*L(n+1) + 2*L(n))/5 with L(n) = A000032(n) = A000204(n), n >= 1.
G.f.: x*((1+2*x)/(1-x-x^2))^2. (End)

Extensions

More terms from Alois P. Heinz, Oct 28 2008