cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A004942 a(n) = round(n*phi^7), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 29, 58, 87, 116, 145, 174, 203, 232, 261, 290, 319, 348, 377, 406, 436, 465, 494, 523, 552, 581, 610, 639, 668, 697, 726, 755, 784, 813, 842, 871, 900, 929, 958, 987, 1016, 1045, 1074, 1103, 1132, 1161, 1190, 1219, 1248, 1278, 1307, 1336, 1365, 1394, 1423, 1452, 1481, 1510, 1539, 1568, 1597, 1626, 1655, 1684
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[n GoldenRatio^7], {n, 0, 100}] (* Vincenzo Librandi, Oct 21 2014 *)
  • PARI
    ph=(1+sqrt(5))/2; a(n)=round(n*ph^7);
    vector(66,n,a(n-1)) \\ Joerg Arndt, Oct 21 2014

Extensions

More terms from Joerg Arndt, Oct 21 2014

A004939 a(n) = round(n*phi^4), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 7, 14, 21, 27, 34, 41, 48, 55, 62, 69, 75, 82, 89, 96, 103, 110, 117, 123, 130, 137, 144, 151, 158, 164, 171, 178, 185, 192, 199, 206, 212, 219, 226, 233, 240, 247, 254, 260, 267, 274, 281, 288, 295, 302, 308
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Round(n*(7+3*Sqrt(5))/2): n in [0..80]]; // G. C. Greubel, Dec 04 2023
    
  • Mathematica
    Round[Range[0,100]GoldenRatio^4] (* Paolo Xausa, Oct 28 2023 *)
  • SageMath
    [round(golden_ratio^4*n) for n in range(81)] # G. C. Greubel, Dec 04 2023

A004940 a(n) = round(n*phi^5), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 11, 22, 33, 44, 55, 67, 78, 89, 100, 111, 122, 133, 144, 155, 166, 177, 189, 200, 211, 222, 233, 244, 255, 266, 277, 288, 299, 311, 322, 333, 344, 355, 366, 377, 388, 399, 410, 421, 433, 444, 455, 466, 477
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Round(n*(11+5*Sqrt(5))/2): n in [0..80]]; // G. C. Greubel, Dec 04 2023
    
  • Mathematica
    With[{c=GoldenRatio^5},Round[c*Range[0,50]]] (* Harvey P. Dale, Nov 28 2021 *)
  • SageMath
    [round(golden_ratio^5*n) for n in range(81)] # G. C. Greubel, Dec 04 2023

A004943 a(n) = round(n*phi^8), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 47, 94, 141, 188, 235, 282, 329, 376, 423, 470, 517, 564, 611, 658, 705, 752, 799, 846, 893, 940, 987, 1034, 1081, 1127, 1174, 1221, 1268, 1315, 1362, 1409, 1456, 1503, 1550, 1597, 1644, 1691, 1738, 1785
Offset: 0

Views

Author

Keywords

Comments

a(n+48) - a(n+47) - a(n+1) + a(n) = 0 for 0 <= n <= 1055, but not for n = 1056. - Robert Israel, Oct 18 2023

Crossrefs

Programs

  • Maple
    p8:= simplify(((1+sqrt(5))/2)^8);
    seq(round(n*p8),n=0..100); # Robert Israel, Oct 18 2023
  • Mathematica
    Round[GoldenRatio^8 Range[0,40]] (* Harvey P. Dale, Sep 18 2023 *)
Showing 1-4 of 4 results.