cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005002 Number of rhyme schemes (see reference for precise definition).

Original entry on oeis.org

1, 4, 13, 41, 134, 471, 1819, 7778, 36703, 189381, 1057332, 6328261, 40300959, 271501240, 1925961025, 14332064197, 111528998198, 905134802555, 7643011810167, 67010181855706, 608890179868163, 5724496098183649
Offset: 1

Views

Author

Keywords

References

  • J. Riordan, A budget of rhyme scheme counts, pp. 455 - 465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a005002 n = a005002_list !! (n-1)
    a005002_list = 1 : zipWith (+) (map (* 2) a005002_list)
                                   (drop 2 a000110_list)
    -- Reinhard Zumkeller, Jun 19 2015
  • Maple
    A000110 := proc(n) combinat[bell](n) ; end:
    A005001:=n->if n = 0 then 0; else add(combinat[bell](k),k=0..n); fi;
    A102661 := proc(n,k) add(combinat[stirling2](n,i),i=1..k) ; end:
    beta := proc(n,k) if k= 1 then A005001(n) ; elif k= n then 1 ; else k*beta(n-1,k)+A000110(n-1)-A102661(n-1,k-2) ; fi ; end:
    A005002 := proc(n) beta(n,2) ; end:
    seq(A005002(n),n=2..30) ; # R. J. Mathar, Jul 15 2008
  • Mathematica
    a[1]=1; a[n_] := a[n] = 2a[n-1] + BellB[n]; a /@ Range[22]
    (* Jean-François Alcover, May 19 2011, after R. J. Mathar *)
    nxt[{n_,a_}]:={n+1,2a+BellB[n+1]}; Transpose[NestList[nxt,{1,1},30]] [[2]] (* Harvey P. Dale, Apr 20 2015 *)

Formula

a(k)=1. a(n) = k*a(n-1) + A000110(n-1) - A102661(n-1,k-2), k=2. - R. J. Mathar, Jul 15 2008

Extensions

More terms from R. J. Mathar, Jul 15 2008