cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A295222 Array read by antidiagonals: T(n,k) is the number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals rooted at a cell up to rotation (k >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 5, 10, 1, 1, 6, 22, 30, 1, 1, 8, 40, 116, 99, 1, 1, 9, 64, 285, 612, 335, 1, 1, 11, 92, 578, 2126, 3399, 1144, 1, 1, 12, 126, 1015, 5481, 16380, 19228, 3978, 1, 1, 14, 166, 1641, 11781, 54132, 129456, 111041, 14000
Offset: 1

Views

Author

Andrew Howroyd, Nov 17 2017

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called F.

Examples

			Array begins:
  ===========================================================
  n\k|     3      4       5        6         7          8
  ---|-------------------------------------------------------
   1 |     1      1       1        1         1          1 ...
   2 |     1      1       1        1         1          1 ...
   3 |     3      5       6        8         9         11 ...
   4 |    10     22      40       64        92        126 ...
   5 |    30    116     285      578      1015       1641 ...
   6 |    99    612    2126     5481     11781      22386 ...
   7 |   335   3399   16380    54132    141778     317860 ...
   8 |  1144  19228  129456   548340   1753074    4638348 ...
   9 |  3978 111041 1043460  5672645  22137570   69159400 ...
  10 | 14000 650325 8544965 59653210 284291205 1048927880 ...
  ...
		

Crossrefs

Columns k=3..5 are A003441, A005033, A005037.

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    T[n_, k_] := DivisorSum[GCD[n-1, k], EulerPhi[#]*u[(n-1)/#, k, k/#]&]/k;
    Table[T[n - k + 3, k], {n, 1, 10}, {k, n + 2, 3, -1}] // Flatten (* Jean-François Alcover, Nov 21 2017, after Andrew Howroyd *)
  • PARI
    \\ here u is Fuss-Catalan sequence with p = k+1.
    u(n,k,r)={r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n,k)=sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d, k, k/d))/k;
    for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);
    
  • Python
    from sympy import binomial, gcd, totient, divisors
    def u(n, k, r): return r*binomial((k - 1)*n + r, n)//((k - 1)*n + r)
    def T(n, k): return sum([totient(d)*u((n - 1)//d, k, k//d) for d in divisors(gcd(n - 1, k))])//k
    for n in range(1, 11): print([T(n, k) for k in range(3, 9)]) # Indranil Ghosh, Dec 13 2017, after PARI

Formula

T(n,k) = Sum_{d|gcd(n-1,k)} phi(d)*u((n-1)/d, k, k/d)/k where u(n,k,r) = r*binomial((k - 1)*n + r, n)/((k - 1)*n + r).
T(n,k) ~ n*A070914(n,k-2)/(n*(k-2)+2) for fixed k.

A003454 Number of nonequivalent dissections of an n-gon by nonintersecting diagonals rooted at a cell up to rotation.

Original entry on oeis.org

1, 2, 6, 25, 107, 509, 2468, 12258, 61797, 315830, 1630770, 8498303, 44629855, 235974495, 1255105304, 6710883952, 36050676617, 194478962422, 1053120661726, 5722375202661, 31191334491891, 170504130213135, 934495666529380, 5134182220623958, 28270742653671621
Offset: 3

Views

Author

Keywords

Comments

Total number of dissections of an n-gon into polygons without reflection and rooted at a cell. - Sean A. Irvine, May 14 2015
Say two n-gons are equivalent (or in the same convexity class) if there is a bijection between the edges and vertices which preserves inclusion of vertices and edges, preserves the handedness of the polygon (does not reflect the polygon over a line), maps vertices of the convex hulls to each other, and induces an equivalence on each nontrivially connected component of Hull(X) \ X. This sequence is the number of convexity classes for an n-gon, up to rotation. - Griffin N. Macris, Mar 02 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    \\ See A003442 for DissectionsModCyclicRooted.
    DissectionsModCyclicRooted(apply(i->1, [1..30])) \\ Andrew Howroyd, Nov 22 2017

Formula

G.f.: -f(x) - (f(x)^2 + f(x^2))/2 + Sum_{k>=1} (phi(k)/k)*log(1/(1 - f(x^k))), where phi(k) is Euler's Totient function and f(x) = (1 + x - sqrt(1 - 6x + x^2))/4 is related to the o.g.f. for A001003. - Griffin N. Macris, Mar 02 2021

Extensions

More terms from Sean A. Irvine, May 14 2015
Name clarified by Andrew Howroyd, Nov 22 2017
Showing 1-2 of 2 results.