cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A295260 Array read by antidiagonals: T(n,k) = number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals up to rotation and reflection (k >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 5, 4, 1, 1, 3, 8, 16, 12, 1, 1, 3, 12, 33, 60, 27, 1, 1, 4, 16, 68, 194, 261, 82, 1, 1, 4, 21, 112, 483, 1196, 1243, 228, 1, 1, 5, 27, 183, 1020, 3946, 8196, 6257, 733, 1, 1, 5, 33, 266, 1918, 10222, 34485, 58140, 32721, 2282
Offset: 1

Views

Author

Andrew Howroyd, Nov 18 2017

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called h.
T(n,k) is the number of unoriented polyominoes containing n k-gonal tiles of the hyperbolic regular tiling with Schläfli symbol {k,oo}. Stereographic projections of several of these tilings on the Poincaré disk can be obtained via the Christensson link. For unoriented polyominoes, chiral pairs are counted as one. T(n,2) could represent polyominoes of the Euclidean regular tiling with Schläfli symbol {2,oo}; T(n,2) = 1. - Robert A. Russell, Jan 21 2024

Examples

			Array begins:
  ===================================================
  n\k|   3     4      5       6        7        8
  ---|-----------------------------------------------
   1 |   1     1      1       1        1        1 ...
   2 |   1     1      1       1        1        1 ...
   3 |   1     2      2       3        3        4 ...
   4 |   3     5      8      12       16       21 ...
   5 |   4    16     33      68      112      183 ...
   6 |  12    60    194     483     1020     1918 ...
   7 |  27   261   1196    3946    10222    22908 ...
   8 |  82  1243   8196   34485   109947   290511 ...
   9 | 228  6257  58140  315810  1230840  3844688 ...
  10 | 733 32721 427975 2984570 14218671 52454248 ...
  ...
		

Crossrefs

Columns k=3..7 are A000207, A005036, A005040, A004127, A005419.
Polyominoes: A295224 (oriented), A070914 (rooted).

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    T[n_, k_] := (u[n, k, 1] + If[OddQ[n], u[(n - 1)/2, k, Quotient[k, 2]], If[OddQ[k], (u[n/2 - 1, k, k - 1] + u[n/2, k, 1])/2, u[n/2, k, 1]]] + (If[EvenQ[n], u[n/2, k, 1]] - u[n, k, 2])/2 + DivisorSum[GCD[n - 1, k], EulerPhi[#]*u[(n - 1)/#, k, k/#] &]/k)/2 /. Null -> 0;
    Table[T[n - k + 2, k + 1], {n, 1, 11}, {k, n + 1, 2, -1}] // Flatten (* Jean-François Alcover, Dec 28 2017, after Andrew Howroyd *)
  • PARI
    \\ here u is Fuss-Catalan sequence with p = k+1.
    u(n,k,r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n,k) = {(u(n,k,1) + if(n%2, u((n-1)/2,k,k\2), if(k%2, (u(n/2-1,k,(k-1)) + u(n/2,k,1))/2, u(n/2,k,1))) + (if(n%2==0, u(n/2,k,1))-u(n,k,2))/2 + sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d,k,k/d))/k)/2}
    for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);

Formula

T(n,k) ~ A295222(n,k)/(2*n) for fixed k.

A295224 Array read by antidiagonals: T(n,k) = number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals up to rotation (k >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 2, 7, 6, 1, 1, 3, 12, 25, 19, 1, 1, 3, 19, 57, 108, 49, 1, 1, 4, 26, 118, 366, 492, 150, 1, 1, 4, 35, 203, 931, 2340, 2431, 442, 1, 1, 5, 46, 332, 1989, 7756, 16252, 12371, 1424, 1, 1, 5, 57, 494, 3766, 20254, 68685, 115940, 65169, 4522
Offset: 1

Views

Author

Andrew Howroyd, Nov 17 2017

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called H.
T(n,k) is the number of oriented polyominoes containing n k-gonal tiles of the hyperbolic regular tiling with Schläfli symbol {k,oo}. Stereographic projections of several of these tilings on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. T(n,2) could represent polyominoes of the Euclidean regular tiling with Schläfli symbol {2,oo}; T(n,2) = 1. - Robert A. Russell, Jan 21 2024

Examples

			Array begins:
  =====================================================
  n\k|    3     4      5       6        7         8
  ---|-------------------------------------------------
   1 |    1     1      1       1        1         1 ...
   2 |    1     1      1       1        1         1 ...
   3 |    1     2      2       3        3         4 ...
   4 |    4     7     12      19       26        35 ...
   5 |    6    25     57     118      203       332 ...
   6 |   19   108    366     931     1989      3766 ...
   7 |   49   492   2340    7756    20254     45448 ...
   8 |  150  2431  16252   68685   219388    580203 ...
   9 |  442 12371 115940  630465  2459730   7684881 ...
  10 | 1424 65169 854981 5966610 28431861 104898024 ...
  ...
		

Crossrefs

Columns k=3..6 are A001683(n+2), A005034, A005038, A221184(n-1).
Polyominoes: A295260 (unoriented), A070914 (rooted).

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    T[n_, k_] := u[n, k, 1] + (If[EvenQ[n], u[n/2, k, 1], 0] - u[n, k, 2])/2 + DivisorSum[GCD[n - 1, k], EulerPhi[#]*u[(n - 1)/#, k, k/#]&]/k;
    Table[T[n - k + 1, k], {n, 1, 13}, {k, n, 3, -1}] // Flatten (* Jean-François Alcover, Nov 21 2017, after Andrew Howroyd *)
  • PARI
    \\ here u is Fuss-Catalan sequence with p = k+1.
    u(n, k, r)={r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n,k) = u(n,k,1) + (if(n%2==0, u(n/2,k,1))-u(n,k,2))/2 + sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d,k,k/d))/k;
    for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);
    
  • Python
    from sympy import binomial, gcd, totient, divisors
    def u(n, k, r): return r*binomial((k - 1)*n + r, n)//((k - 1)*n + r)
    def T(n, k): return u(n, k, 1) + ((u(n//2, k, 1) if n%2==0 else 0) - u(n, k, 2))//2 + sum([totient(d)*u((n - 1)//d, k, k//d) for d in divisors(gcd(n - 1, k))])//k
    for n in range(1, 11): print([T(n, k) for k in range(3, 9)]) # Indranil Ghosh, Dec 13 2017, after PARI code

Formula

T(n,k) ~ A295222(n,k)/n for fixed k.

A295259 Array read by antidiagonals: T(n,k) = number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals rooted at a cell up to rotation and reflection (k >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 4, 13, 16, 1, 1, 6, 22, 64, 52, 1, 1, 6, 35, 147, 315, 170, 1, 1, 8, 49, 302, 1074, 1727, 579, 1, 1, 8, 67, 518, 2763, 8216, 9658, 1996, 1, 1, 10, 87, 843, 5916, 27168, 64798, 55657, 7021
Offset: 1

Views

Author

Andrew Howroyd, Nov 18 2017

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called f.

Examples

			Array begins:
  =========================================================
  n\k|    3      4       5        6         7         8
  ---|-----------------------------------------------------
   1 |    1      1       1        1         1         1 ...
   2 |    1      1       1        1         1         1 ...
   3 |    2      4       4        6         6         8 ...
   4 |    6     13      22       35        49        67 ...
   5 |   16     64     147      302       518       843 ...
   6 |   52    315    1074     2763      5916     11235 ...
   7 |  170   1727    8216    27168     70984    159180 ...
   8 |  579   9658   64798   274360    876790   2319678 ...
   9 | 1996  55657  521900  2837208  11069760  34582800 ...
  10 | 7021 325390 4272967 29828330 142148343 524470485 ...
  ...
		

Crossrefs

Columns k=3..5 are A003446, A005035, A005039.

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    F[n_, k_] := DivisorSum[GCD[n-1, k], EulerPhi[#]*u[(n-1)/#, k, k/#] &]/k;
    T[n_, k_] := (F[n, k] + If[OddQ[k], If[OddQ[n], u[(n-1)/2, k, (k-1)/2], u[n/2-1, k, k-1]], If[OddQ[n], u[(n-1)/2, k, k/2+1], u[n/2-1, k, k]]])/2;
    Table[T[n-k-1, k], {n, 1, 14}, {k, n-2, 3, -1}] // Flatten (* Jean-François Alcover, Jan 19 2018, translated from PARI *)
  • PARI
    \\ here u is Fuss-Catalan sequence with p = k+1.
    u(n,k,r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    F(n,k) = {sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d,k,k/d))/k}
    T(n,k) = {(F(n,k) + if(k%2, if(n%2, u((n-1)/2,k,(k-1)/2), u(n/2-1,k,(k-1))), if(n%2, u((n-1)/2,k,k/2+1), u(n/2-1,k,k)) ))/2;}
    for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);
    
  • Python
    from sympy import binomial, gcd, totient, divisors
    def u(n, k, r): return r*binomial((k - 1)*n + r, n)//((k - 1)*n + r)
    def F(n, k): return sum([totient(d)*u((n - 1)//d, k, k//d) for d in divisors(gcd(n - 1, k))])//k
    def T(n, k): return (F(n, k) + ((u((n - 1)//2, k, (k - 1)//2) if n%2 else u(n//2 - 1, k, k - 1)) if k%2 else (u((n - 1)//2, k, k//2 + 1) if n%2 else u(n//2 - 1, k, k))))//2
    for n in range(1, 11): print([T(n, k) for k in range(3, 9)]) # Indranil Ghosh, Dec 13 2017, after PARI code

Formula

T(n,k) ~ A295222(n,k)/2 for fixed k.

A003454 Number of nonequivalent dissections of an n-gon by nonintersecting diagonals rooted at a cell up to rotation.

Original entry on oeis.org

1, 2, 6, 25, 107, 509, 2468, 12258, 61797, 315830, 1630770, 8498303, 44629855, 235974495, 1255105304, 6710883952, 36050676617, 194478962422, 1053120661726, 5722375202661, 31191334491891, 170504130213135, 934495666529380, 5134182220623958, 28270742653671621
Offset: 3

Views

Author

Keywords

Comments

Total number of dissections of an n-gon into polygons without reflection and rooted at a cell. - Sean A. Irvine, May 14 2015
Say two n-gons are equivalent (or in the same convexity class) if there is a bijection between the edges and vertices which preserves inclusion of vertices and edges, preserves the handedness of the polygon (does not reflect the polygon over a line), maps vertices of the convex hulls to each other, and induces an equivalence on each nontrivially connected component of Hull(X) \ X. This sequence is the number of convexity classes for an n-gon, up to rotation. - Griffin N. Macris, Mar 02 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    \\ See A003442 for DissectionsModCyclicRooted.
    DissectionsModCyclicRooted(apply(i->1, [1..30])) \\ Andrew Howroyd, Nov 22 2017

Formula

G.f.: -f(x) - (f(x)^2 + f(x^2))/2 + Sum_{k>=1} (phi(k)/k)*log(1/(1 - f(x^k))), where phi(k) is Euler's Totient function and f(x) = (1 + x - sqrt(1 - 6x + x^2))/4 is related to the o.g.f. for A001003. - Griffin N. Macris, Mar 02 2021

Extensions

More terms from Sean A. Irvine, May 14 2015
Name clarified by Andrew Howroyd, Nov 22 2017

A370060 Array read by antidiagonals: T(n,k) is the number of achiral dissections of a polygon into n k-gons by nonintersecting diagonals rooted at a cell, n >= 1, k >= 3.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 4, 2, 1, 1, 4, 4, 12, 5, 1, 1, 3, 6, 9, 18, 5, 1, 1, 5, 6, 26, 22, 55, 14, 1, 1, 4, 8, 21, 45, 52, 88, 14, 1, 1, 6, 8, 45, 51, 204, 140, 273, 42, 1, 1, 5, 10, 38, 84, 190, 380, 340, 455, 42, 1, 1, 7, 10, 69, 92, 500, 506, 1771, 969, 1428, 132
Offset: 1

Views

Author

Andrew Howroyd, Feb 08 2024

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.

Examples

			Array begins:
=============================================
n\k|  3   4   5    6    7    8    9    10 ...
---+-----------------------------------------
1  |  1   1   1    1    1    1    1     1 ...
2  |  1   1   1    1    1    1    1     1 ...
3  |  1   3   2    4    3    5    4     6 ...
4  |  2   4   4    6    6    8    8    10 ...
5  |  2  12   9   26   21   45   38    69 ...
6  |  5  18  22   45   51   84   92   135 ...
7  |  5  55  52  204  190  500  468   992 ...
8  | 14  88 140  380  506 1008 1240  2100 ...
9  | 14 273 340 1771 1950 6200 6545 15990 ...
  ...
		

Crossrefs

Columns k=3..6 are A208355(n-1), A124817(n-1), A369472, A370061.
Cf. A070914 (rooted), A295222 (oriented), A295259 (unoriented), A369929, A370062 (achiral unrooted).

Programs

  • PARI
    \\ here u is Fuss-Catalan sequence with p = k-1.
    u(n, k, r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n, k) = {if(k%2, if(n%2, u((n-1)/2, k, (k-1)/2), u(n/2-1, k, (k-1))), if(n%2, u((n-1)/2, k, k/2+1), u(n/2-1, k, k)) )}
    for(n=1, 9, for(k=3, 10, print1(T(n, k), ", ")); print);

Formula

T(n,k) = 2*A295259(n,k) - A295222(n,k).
T(n,2*k+1) = A370062(n,2*k+1).

A003441 Number of nonequivalent dissections of a polygon into n triangles by nonintersecting diagonals rooted at a cell up to rotation.

Original entry on oeis.org

1, 1, 3, 10, 30, 99, 335, 1144, 3978, 14000, 49742, 178296, 643856, 2340135, 8554275, 31429068, 115997970, 429874830, 1598952498, 5967382200, 22338765540, 83859016956, 315614844558, 1190680751376, 4501802224520, 17055399281284
Offset: 1

Views

Author

Keywords

Comments

Number of dissections of regular (n+2)-gon into n polygons without reflection and rooted at a cell. - Sean A. Irvine, May 05 2015

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A295222.

Programs

  • Maple
    [seq(combstruct[count]([C, {C=Cycle(BT,card=3),BT=Union(Z,Prod(BT,BT))}],size=n),n=0..12)];
  • Mathematica
    a[n_] := DivisorSum[GCD[3, n-1], EulerPhi[#] Binomial[(2n+1)/#, (n-1)/#]/ (2n+1)&];
    Array[a, 30] (* Jean-François Alcover, Jul 02 2018 *)
  • PARI
    catalan(n) = binomial(2*n, n)/(n+1);
    a(n) = binomial(2*n+1, n-1)/(2*n+1) + 2/3*(if ((n-1) % 3, 0, catalan((n-1)/3))); \\ Michel Marcus, Jan 23 2016

Formula

a(n) = number of necklaces of n-1 white beads and n+2 black beads. a(n) = binomial(2n+1, n-1)/(2n+1) + (2/3)*C((n-1)/3) where C is the Catalan number A000108 (assumed to be 0 for nonintegral argument). G.f.: ( ((1-sqrt(1-4x))/2)^3 + (1-sqrt(1-4x^3)) )/(3x^2).
Numbers so far suggest that two trisections of sequence agree with those of A050181. - Ralf Stephan, Mar 28 2004

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
Name edited by Andrew Howroyd, Nov 20 2017

A005033 Number of nonequivalent dissections of a polygon into n quadrilaterals by nonintersecting diagonals rooted at a cell up to rotation.

Original entry on oeis.org

1, 1, 5, 22, 116, 612, 3399, 19228, 111041, 650325, 3856892, 23107896, 139672312, 850624376, 5214734547, 32154708216, 199292232035, 1240877862315, 7758138260565, 48685766617950, 306558216362064, 1936246229757840, 12263985131919300, 77880114240872112
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A295222.

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k-1)*n + r, n]/((k-1)*n + r);
    T[n_, k_] := DivisorSum[GCD[n-1, k], EulerPhi[#]*u[(n-1)/#, k, k/#]&]/k;
    a[n_] := T[n, 4];
    Array[a, 24] (* Jean-François Alcover, Aug 20 2019, after Andrew Howroyd *)

Extensions

More terms from Sean A. Irvine, Mar 11 2016
Name edited by Andrew Howroyd, Nov 20 2017

A005037 Number of nonequivalent dissections of a polygon into n pentagons by nonintersecting diagonals rooted at a cell up to rotation.

Original entry on oeis.org

1, 1, 6, 40, 285, 2126, 16380, 129456, 1043460, 8544965, 70893054, 594610536, 5033644070, 42952562100, 369061673400, 3190379997272, 27727712947836, 242135589539124, 2123541227823800, 18695484623015200, 165169213716082765
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=5 of A295222.

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k-1)*n + r, n]/((k-1)*n + r);
    T[n_, k_] := DivisorSum[GCD[n-1, k], EulerPhi[#]*u[(n-1)/#, k, k/#]&]/k;
    a[n_] := T[n, 5];
    Array[a, 21] (* Jean-François Alcover, Aug 20 2019, after Andrew Howroyd *)

Extensions

More terms from Sean A. Irvine, Mar 11 2016
Name edited by Andrew Howroyd, Nov 20 2017
Showing 1-8 of 8 results.