cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A000207 Number of inequivalent ways of dissecting a regular (n+2)-gon into n triangles by n-1 non-intersecting diagonals under rotations and reflections; also the number of (unlabeled) maximal outerplanar graphs on n+2 vertices.

Original entry on oeis.org

1, 1, 1, 3, 4, 12, 27, 82, 228, 733, 2282, 7528, 24834, 83898, 285357, 983244, 3412420, 11944614, 42080170, 149197152, 531883768, 1905930975, 6861221666, 24806004996, 90036148954, 327989004892, 1198854697588, 4395801203290, 16165198379984, 59609171366326, 220373278174641
Offset: 1

Views

Author

Keywords

Comments

Also a(n) is the number of hexaflexagons of order n+2. - Mike Godfrey (m.godfrey(AT)umist.ac.uk), Feb 25 2002 (see the Kosters paper).
Number of normally non-isomorphic realizations of the associahedron of type II with dimension n in Ceballos et al. - Tom Copeland, Oct 19 2011
Number of polyforms with n cells in the hyperbolic tiling with Schläfli symbol {3,oo}, not distinguishing enantiomorphs. - Thomas Anton, Jan 16 2019
A stereographic projection of the {3,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 20 2024
A maximal outerplanar graph (MOP) has a plane embedding with all vertices on the exterior region and interior regions triangles. - Allan Bickle, Feb 25 2024

Examples

			E.g., a square (4-gon, n=2) could have either diagonal drawn, C(3)=2, but with essentially only one result. A pentagon (5-gon, n=3) gives C(4)=5, but they each have 2 diags emanating from 1 of the 5 vertices and are essentially the same. A hexagon can have a nuclear disarmament sign (6 ways), an N (3 ways and 3 reflections) or a triangle (2 ways) of diagonals, 6 + 6 + 2 = 14 = C(5), but only 3 essentially different. - _R. K. Guy_, Mar 06 2004
G.f. = x + x^2 + x^3 + 3*x^4 + 4*x^5 + 12*x^6 + 27*x^7 + 82*x^8 + ...
		

References

  • L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted in Math. Annalen, 191 (1971), 87-98.
  • Cameron, Peter J. Some treelike objects. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009). See pp. 155, 163, but note that the formulas on p. 163, lines 5 and 6, contain typos. See the correct formulas given here. - N. J. A. Sloane, Apr 18 2014
  • B. N. Cyvin, E. Brendsdal, J. Brunvoll and S. J. Cyvin, Isomers of polyenes attached to benzene, Croatica Chemica Acta, 68 (1995), 63-73.
  • S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751.
  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • R. K. Guy, "Dissecting a polygon into triangles," Bull. Malayan Math. Soc., Vol. 5, pp. 57-60, 1958.
  • R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 79, Table 3.5.1 (the entries for n=16 and n=21 appear to be incorrect).
  • M. Kosters, A theory of hexaflexagons, Nieuw Archief Wisk., 17 (1999), 349-362.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.

Crossrefs

Column k=3 of A295260.
A row or column of the array in A169808.
Polyominoes: A001683(n+2) (oriented), A369314 (chiral), A208355(n-1) (achiral), A005036 {4,oo}, A007173 {3,3,oo}.
Cf. A097998, A097999, A098000 (labeled outerplanar graphs).
Cf. A111563, A111564, A111758, A111759, A111757 (unlabeled outerplanar graphs).

Programs

  • Maple
    A000108 := proc(n) if n >= 0 then binomial(2*n,n)/(n+1) ; else 0; fi; end:
    A000207 := proc(n) option remember: local k, it1, it2;
    if n mod 2 = 0 then k := n/2+2 else k := (n+3)/2 fi:
    if n mod 2 <> 0 then it1 := 0 else it1 := 1 fi:
    if (n+2) mod 3 <> 0 then it2 := 0 else it2 := 1 fi:
    RETURN(A000108(n)/(2*n+4) + it1*A000108(n/2)/4 + A000108(k-2)/2 + it2*A000108((n-1)/3)/3)
    end:
    seq(A000207(n),n=1..30) ; # (Revised Maple program from R. J. Mathar, Apr 19 2009)
    A000207 := proc(n) option remember: local k,it1,it2; if n mod 2 = 0 then k := n/2+1 else k := (n+1)/2 fi: if n mod 2 <> 0 then it1 := 0 else it1 := 1 fi: if n mod 3 <> 0 then it2 := 0 else it2 := 1 fi: RETURN(A000108(n-2)/(2*n) + it1*A000108(n/2+1-2)/4 + A000108(k-2)/2 + it2*A000108(n/3+1-2)/3) end:
    A000207 := n->(A000108(n)/(n+2)+A000108(floor(n/2))*((1+(n+1 mod 2) /2)))/2+`if`(n mod 3=1,A000108(floor((n-1)/3))/3,0); # Peter Luschny, Apr 19 2009 and M. F. Hasler, Apr 19 2009
    G:=(12*(1+x-2*x^2)+(1-4*x)^(3/2)-3*(3+2*x)*(1-4*x^2)^(1/2)-4*(1-4*x^3)^(1/2))/24/x^2: Gser:=series(G,x=0,35): seq(coeff(Gser,x^n),n=1..31); # Emeric Deutsch, Dec 19 2004
  • Mathematica
    p=3; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)
    a[n_] := (CatalanNumber[n]/(n+2) + CatalanNumber[ Quotient[n, 2]] *((1 + Mod[n-1, 2]/2)))/2 + If[Mod[n, 3] == 1, CatalanNumber[ Quotient[n-1, 3]]/3, 0] ; Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Sep 08 2011, after PARI *)
  • PARI
    A000207(n)=(A000108(n)/(n+2)+A000108(n\2)*if(n%2,1,3/2))/2+if(n%3==1,A000108(n\3)/3) \\ M. F. Hasler, Apr 19 2009

Formula

a(n) = C(n)/(2*n) + C(n/2+1)/4 + C(k)/2 + C(n/3+1)/3 where C(n) = A000108(n-2) if n is an integer, 0 otherwise and k = (n+1)/2 if n is odd, k = n/2+1 if n is even. Thus C(2), C(3), C(4), C(5), ... are 1, 1, 2, 5, ...
G.f.: (12*(1+x-2*x^2) + (1-4*x)^(3/2) - 3*(3+2*x)*(1-4*x^2)^(1/2) - 4*(1-4*x^3)^(1/2))/(24*x^2). - Emeric Deutsch, Dec 19 2004, from the S. J. Cyvin et al. reference.
a(n) ~ A000108(n)/(2*n+4) ~ 4^n / (2 sqrt(n Pi)*(n + 1)*(n + 2)). - M. F. Hasler, Apr 19 2009
a(n) = A001683(n+2) - A369314(n) = (A001683(n+2) + A208355(n-1)) / 2 = A369314(n) + A208355(n-1). - Robert A. Russell, Jan 19 2024
Beineke and Pippert have an explicit formula with six cases (based on the value of n mod 6). - Allan Bickle, Feb 25 2024

Extensions

More terms from James Sellers, Jul 10 2000

A001004 Number of nonequivalent dissections of an (n+2)-gon by nonintersecting diagonals up to rotation and reflection.

Original entry on oeis.org

1, 1, 2, 3, 9, 20, 75, 262, 1117, 4783, 21971, 102249, 489077, 2370142, 11654465, 57916324, 290693391, 1471341341, 7504177738, 38532692207, 199076194985, 1034236705992, 5400337050086, 28329240333758, 149244907249629
Offset: 0

Views

Author

Keywords

Comments

Original name: number of symmetric dissections of a polygon.
Also number of 2-connected outerplanar graphs on n unlabeled nodes. - Steven Finch, Dec 09 2004

References

  • Cameron, Peter J. Some treelike objects. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009). See p. 155. - N. J. A. Sloane, Apr 18 2014
  • Guanzhang Hu, Group theory method for enumeration of outerplanar graphs, Acta Math. Appl. Sinica 14 (1998) 381-387.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    f[x_, n_]:=x+Sum[(1/r)*Binomial[s-2, r-1]*Binomial[r+s-1, s]*x^s, {r, 1, n}, {s, 2, n}]; F[x_, n_]:=Series[((3x^2-2*x*f[x, n]+f[x, n]^2)- (2+2*x+7*x^2-4*x*f[x, n]+2*f[x, n]^2)*f[x^2, n]+ 2*f[x^2, n]^2)/(4*(2*f[x^2, n]-1))+Sum[If[Mod[k, d]==0, EulerPhi[d]*f[x^d, n]^(k/d)/k, 0], {k, 3, n}, {d, 1, k}]/2, {x, 0, n}]; F[x, 22] (Finch)
  • PARI
    \\ See A295419 for DissectionsModDihedral().
    my(v=DissectionsModDihedral(apply(i->1, [1..30])));v[3..#v] \\ Andrew Howroyd, Nov 22 2017

Extensions

More terms from Esa Peuha (esa.peuha(AT)helsinki.fi), Oct 21 2005
Name clarified by Andrew Howroyd, Nov 22 2017

A070914 Array read by antidiagonals giving number of paths up and left from (0,0) to (n,kn) where x/y <= k for all intermediate points.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 14, 1, 1, 1, 5, 22, 55, 42, 1, 1, 1, 6, 35, 140, 273, 132, 1, 1, 1, 7, 51, 285, 969, 1428, 429, 1, 1, 1, 8, 70, 506, 2530, 7084, 7752, 1430, 1, 1, 1, 9, 92, 819, 5481, 23751, 53820, 43263, 4862, 1, 1, 1, 10, 117, 1240
Offset: 0

Views

Author

Henry Bottomley, May 20 2002

Keywords

Comments

Also related to dissections of polygons and enumeration of trees.
Number of dissections of a polygon into n (k+2)-gons by nonintersecting diagonals. All dissections are counted separately. See A295260 for nonequivalent solutions up to rotation and reflection. - Andrew Howroyd, Nov 20 2017
Number of rooted polyominoes composed of n (k+2)-gonal cells of the hyperbolic (Euclidean for k=0) regular tiling with Schläfli symbol {k+2,oo}. A rooted polyomino has one external edge identified, and chiral pairs are counted as two. For k>0, a stereographic projection of the {k+2,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 27 2024

Examples

			Rows start:
===========================================================
n\k| 0     1      2       3        4        5         6
---|-------------------------------------------------------
0  | 1,    1,     1,      1,       1,       1,        1 ...
1  | 1,    1,     1,      1,       1,       1,        1 ...
2  | 1,    2,     3,      4,       5,       6,        7 ...
3  | 1,    5,    12,     22,      35,      51,       70 ...
4  | 1,   14,    55,    140,     285,     506,      819 ...
5  | 1,   42,   273,    969,    2530,    5481,    10472 ...
6  | 1,  132,  1428,   7084,   23751,   62832,   141778 ...
7  | 1,  429,  7752,  53820,  231880,  749398,  1997688 ...
8  | 1, 1430, 43263, 420732, 2330445, 9203634, 28989675 ...
...
		

Crossrefs

Rows include A000012 (twice), A000027, A000326.
Reflected version of A062993 (which is the main entry).
Cf. A295260.
Polyominoes: A295224 (oriented), A295260 (unoriented).

Programs

  • Maple
    A:= (n, k)-> binomial((k+1)*n, n)/(k*n+1):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 25 2015
  • Mathematica
    T[n_, k_] = Binomial[n(k+1), n]/(k*n+1); Flatten[Table[T[n-k, k], {n, 0, 9}, {k, n, 0, -1}]] (* Jean-François Alcover, Apr 08 2016 *)
  • PARI
    T(n, k) = binomial(n*(k+1), n)/(n*k+1); \\ Andrew Howroyd, Nov 20 2017

Formula

T(n, k) = binomial(n*(k+1), n)/(n*k+1) = A071201(n, k*n) = A071201(n, k*n+1) = A071202(n, k*n+1) = A062993(n+k-1, k-1).
If P(k,x) = Sum_{n>=0} T(n,k)*x^n is the g.f. of column k (k>=0), then P(k,x) = exp(1/(k+1)*(Sum_{j>0} (1/j)*binomial((k+1)*j,j)*x^j)). - Werner Schulte, Oct 13 2015

A005036 Number of nonequivalent dissections of a polygon into n quadrilaterals by nonintersecting diagonals up to rotation and reflection.

Original entry on oeis.org

1, 1, 2, 5, 16, 60, 261, 1243, 6257, 32721, 175760, 963900, 5374400, 30385256, 173837631, 1004867079, 5861610475, 34469014515, 204161960310, 1217145238485, 7299007647552, 44005602441840
Offset: 1

Views

Author

Keywords

Comments

Closed formula is given in my paper linked below. - Nikos Apostolakis, Aug 01 2018
Number of unoriented polyominoes composed of n square cells of the hyperbolic regular tiling with Schläfli symbol {4,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For unoriented polyominoes, chiral pairs are counted as one. - Robert A. Russell, Jan 20 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A295260.
Polyominoes: A005034 (oriented), A369315 (chiral), A047749 (achiral), A385149 (asymmetric), A001764 (rooted), A000207 {3,oo}, A005040 {5,oo}, A005038 {5,oo} (oriented).

Programs

  • Mathematica
    p=4; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)
    Table[(3Binomial[3n,n]/(2n+1)-Binomial[3n+1,n]/(n+1)-If[OddQ[n],-10Binomial[(3n-1)/2,(n-1)/2]-If[1==Mod[n,4],4Binomial[(3n-3)/4,(n-1)/4],0],-6Binomial[3n/2,n/2]]/(n+1))/8,{n,0,30}] (* Robert A. Russell, Jun 19 2025 *)

Formula

a(n) ~ 3^(3*n + 1/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n + 4)). - Vaclav Kotesovec, Mar 13 2016
a(n) = A005034(n) - A369315(n) = (A005034(n) + A047749(n)) / 2 = A369315(n) + A047749(n). - Robert A. Russell, Jan 19 2024
G.f.: (3*G(z) - G(z)^2 + 6*G(z^2) + 5z*G(z^2)^2 + 2z*G(z^4)) / 8, where G(z)=1+z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Jun 19 2025

Extensions

More terms from Sascha Kurz, Oct 13 2001
Name edited by Andrew Howroyd, Nov 20 2017

A295224 Array read by antidiagonals: T(n,k) = number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals up to rotation (k >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 2, 7, 6, 1, 1, 3, 12, 25, 19, 1, 1, 3, 19, 57, 108, 49, 1, 1, 4, 26, 118, 366, 492, 150, 1, 1, 4, 35, 203, 931, 2340, 2431, 442, 1, 1, 5, 46, 332, 1989, 7756, 16252, 12371, 1424, 1, 1, 5, 57, 494, 3766, 20254, 68685, 115940, 65169, 4522
Offset: 1

Views

Author

Andrew Howroyd, Nov 17 2017

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called H.
T(n,k) is the number of oriented polyominoes containing n k-gonal tiles of the hyperbolic regular tiling with Schläfli symbol {k,oo}. Stereographic projections of several of these tilings on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. T(n,2) could represent polyominoes of the Euclidean regular tiling with Schläfli symbol {2,oo}; T(n,2) = 1. - Robert A. Russell, Jan 21 2024

Examples

			Array begins:
  =====================================================
  n\k|    3     4      5       6        7         8
  ---|-------------------------------------------------
   1 |    1     1      1       1        1         1 ...
   2 |    1     1      1       1        1         1 ...
   3 |    1     2      2       3        3         4 ...
   4 |    4     7     12      19       26        35 ...
   5 |    6    25     57     118      203       332 ...
   6 |   19   108    366     931     1989      3766 ...
   7 |   49   492   2340    7756    20254     45448 ...
   8 |  150  2431  16252   68685   219388    580203 ...
   9 |  442 12371 115940  630465  2459730   7684881 ...
  10 | 1424 65169 854981 5966610 28431861 104898024 ...
  ...
		

Crossrefs

Columns k=3..6 are A001683(n+2), A005034, A005038, A221184(n-1).
Polyominoes: A295260 (unoriented), A070914 (rooted).

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    T[n_, k_] := u[n, k, 1] + (If[EvenQ[n], u[n/2, k, 1], 0] - u[n, k, 2])/2 + DivisorSum[GCD[n - 1, k], EulerPhi[#]*u[(n - 1)/#, k, k/#]&]/k;
    Table[T[n - k + 1, k], {n, 1, 13}, {k, n, 3, -1}] // Flatten (* Jean-François Alcover, Nov 21 2017, after Andrew Howroyd *)
  • PARI
    \\ here u is Fuss-Catalan sequence with p = k+1.
    u(n, k, r)={r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n,k) = u(n,k,1) + (if(n%2==0, u(n/2,k,1))-u(n,k,2))/2 + sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d,k,k/d))/k;
    for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);
    
  • Python
    from sympy import binomial, gcd, totient, divisors
    def u(n, k, r): return r*binomial((k - 1)*n + r, n)//((k - 1)*n + r)
    def T(n, k): return u(n, k, 1) + ((u(n//2, k, 1) if n%2==0 else 0) - u(n, k, 2))//2 + sum([totient(d)*u((n - 1)//d, k, k//d) for d in divisors(gcd(n - 1, k))])//k
    for n in range(1, 11): print([T(n, k) for k in range(3, 9)]) # Indranil Ghosh, Dec 13 2017, after PARI code

Formula

T(n,k) ~ A295222(n,k)/n for fixed k.

A004127 Number of planar hexagon trees with n hexagons.

Original entry on oeis.org

1, 1, 3, 12, 68, 483, 3946, 34485, 315810, 2984570, 28907970, 285601251, 2868869733, 29227904840, 301430074416, 3141985563575, 33059739636198, 350763452126835, 3749420616902637, 40348040718155170, 436827335493148600
Offset: 1

Views

Author

Keywords

Comments

Number of nonequivalent dissections of a polygon into n hexagons by nonintersecting diagonals up to rotation and reflection. - Andrew Howroyd, Nov 20 2017
Number of unoriented polyominoes composed of n hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For unoriented polyominoes, chiral pairs are counted as one. - Robert A. Russell, Jan 23 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=6 of A295260.
Cf. A002294.
Polyominoes: A221184{n-1} (oriented), A369473 (chiral), A143546 (achiral), A005040 {5,oo}, A005419 {7,oo}.

Programs

  • Maple
    T := proc(n) if floor(n)=n then binomial(5*n+1,n)/(5*n+1) else 0 fi end: U := proc(n) if n mod 2 = 0 then binomial(5*n/2+1, n/2)/(5*n/2+1) else 6*binomial((5*n+1)/2,(n-1)/2)/(5*n+1) fi end: S := n->T(n)/4/(2*n+1)+T(n/2)/6+(5*n-2)*T((n-1)/3)/6/(2*n+1)+T((n-1)/6)/6+7*U(n)/12: seq(S(n),n=1..25); (Emeric Deutsch)
  • Mathematica
    p=6; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)

Formula

See Theorem 3 on p. 142 in the Beineke-Pippert paper; also the Maple and Mathematica codes here.
a(n) ~ 5^(5*n + 1/2) / (sqrt(Pi) * n^(5/2) * 2^(8*n + 13/2)). - Vaclav Kotesovec, Mar 13 2016
a(n) = A221184(n-1) - A369473(n) = (A221184(n-1) + A143546(n)) / 2 = A369473(n) + A143546(n). - Robert A. Russell, Jan 23 2024

Extensions

More terms from Emeric Deutsch, Jan 22 2004

A295419 Number of dissections of an n-gon by nonintersecting diagonals into polygons with a prime number of sides counted up to rotations and reflections.

Original entry on oeis.org

1, 1, 2, 4, 8, 23, 64, 222, 752, 2805, 10475, 40614, 158994, 633456, 2548241, 10362685, 42485242, 175557329, 730314350, 3056971164, 12867007761, 54434131848, 231354091945, 987496927875, 4231561861914, 18198894300129, 78533356685275, 339958801585826
Offset: 3

Views

Author

Andrew Howroyd, Nov 22 2017

Keywords

Comments

a(n) first differs from A290816(n) at n=9 since this sequence does not allow the trivial dissection of a nonagon into a single nonagon.

Crossrefs

Programs

  • Mathematica
    DissectionsModDihedral[v_] := Module[{n = Length[v], q, vars, u, R, Q, T, p}, q = Table[0, {n}]; q[[1]] = InverseSeries[x - Sum[x^i v[[i]], {i, 3, Length[v]}]/x + O[x]^(n+1)]; For[i = 2, i <= n, i++, q[[i]] = q[[i-1]] q[[1]]]; vars = Variables[q[[1]]]; u[m_, r_] := Normal[(q[[r]] + O[x]^(Quotient[n, m]+1))] /. Thread[vars -> vars^m]; R = Sum[v[[2i+1]] u[2, i], {i, 1, (Length[v]-1)/2 // Floor}]; Q = Sum[v[[2i]] u[2, i-1], {i, 2, Length[v]/2 // Floor}]; T = Sum[v[[i]] Sum[EulerPhi[d] u[d, i/d], {d, Divisors[i]}]/i, {i, 3, Length[v]}]; p = O[x]^n - x^2 + (x u[1, 1] + u[2, 1] + (Q u[2, 1] - u[1, 2] + (x+R)^2/(1-Q))/2 + T)/2; Drop[ CoefficientList[p, x], 3]];
    DissectionsModDihedral[Boole[PrimeQ[#]]& /@ Range[1, 31]] (* Jean-François Alcover, Sep 25 2019, after Andrew Howroyd *)
  • PARI
    \\ number of dissections into parts defined by set.
    DissectionsModDihedral(v)={my(n=#v);
    my(q=vector(n)); q[1]=serreverse(x-sum(i=3,#v,x^i*v[i])/x + O(x*x^n));
    for(i=2, n, q[i]=q[i-1]*q[1]);
    my(vars=variables(q[1]));
    my(u(m, r)=substvec(q[r]+O(x^(n\m+1)), vars, apply(t->t^m, vars)));
    my(R=sum(i=1, (#v-1)\2, v[2*i+1]*u(2,i)), Q=sum(i=2, #v\2, v[2*i]*u(2,i-1)), T=sum(i=3, #v, my(c=v[i]); if(c, c*sumdiv(i, d, eulerphi(d)*u(d,i/d))/i)));
    my(p=O(x*x^n) - x^2 + (x*u(1,1) + u(2,1) + (Q*u(2,1) - u(1,2) + (x+R)^2/(1-Q))/2 + T)/2);
    vector(n,i,polcoeff(p,i))}
    DissectionsModDihedral(apply(v->isprime(v), [1..25]))

A005040 Number of nonequivalent dissections of a polygon into n pentagons by nonintersecting diagonals up to rotation and reflection.

Original entry on oeis.org

1, 1, 2, 8, 33, 194, 1196, 8196, 58140, 427975, 3223610, 24780752, 193610550, 1534060440, 12302123640, 99699690472, 815521503060, 6725991120004, 55882668179880, 467387136083296, 3932600361607809, 33269692212847056, 282863689410850236, 2415930985594609548
Offset: 1

Views

Author

Keywords

Comments

Number of unoriented polyominoes composed of n pentagonal cells of the hyperbolic regular tiling with Schläfli symbol {5,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For unoriented polyominoes, chiral pairs are counted as one. - Robert A. Russell, Jan 23 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=5 of A295260.
Polyominoes: A005038 (oriented), A369471 (chiral), A369472 (achiral), A000207 {3,oo}, A005036 {4,oo}, A004127 {6,oo}, A005419 {7,oo}.

Programs

  • Mathematica
    p=5; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)

Formula

See Mathematica code.
a(n) ~ 2^(8*n - 1/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n + 5/2)). - Vaclav Kotesovec, Mar 13 2016
a(n) = A005038(n) - A369471(n) = (A005038(n) + A369472(n)) / 2 = A369471(n) + A369472(n). - Robert A. Russell, Jan 23 2024

Extensions

More terms from Sascha Kurz, Oct 13 2001.
Name edited by Andrew Howroyd, Nov 20 2017.

A295222 Array read by antidiagonals: T(n,k) is the number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals rooted at a cell up to rotation (k >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 5, 10, 1, 1, 6, 22, 30, 1, 1, 8, 40, 116, 99, 1, 1, 9, 64, 285, 612, 335, 1, 1, 11, 92, 578, 2126, 3399, 1144, 1, 1, 12, 126, 1015, 5481, 16380, 19228, 3978, 1, 1, 14, 166, 1641, 11781, 54132, 129456, 111041, 14000
Offset: 1

Views

Author

Andrew Howroyd, Nov 17 2017

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called F.

Examples

			Array begins:
  ===========================================================
  n\k|     3      4       5        6         7          8
  ---|-------------------------------------------------------
   1 |     1      1       1        1         1          1 ...
   2 |     1      1       1        1         1          1 ...
   3 |     3      5       6        8         9         11 ...
   4 |    10     22      40       64        92        126 ...
   5 |    30    116     285      578      1015       1641 ...
   6 |    99    612    2126     5481     11781      22386 ...
   7 |   335   3399   16380    54132    141778     317860 ...
   8 |  1144  19228  129456   548340   1753074    4638348 ...
   9 |  3978 111041 1043460  5672645  22137570   69159400 ...
  10 | 14000 650325 8544965 59653210 284291205 1048927880 ...
  ...
		

Crossrefs

Columns k=3..5 are A003441, A005033, A005037.

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    T[n_, k_] := DivisorSum[GCD[n-1, k], EulerPhi[#]*u[(n-1)/#, k, k/#]&]/k;
    Table[T[n - k + 3, k], {n, 1, 10}, {k, n + 2, 3, -1}] // Flatten (* Jean-François Alcover, Nov 21 2017, after Andrew Howroyd *)
  • PARI
    \\ here u is Fuss-Catalan sequence with p = k+1.
    u(n,k,r)={r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n,k)=sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d, k, k/d))/k;
    for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);
    
  • Python
    from sympy import binomial, gcd, totient, divisors
    def u(n, k, r): return r*binomial((k - 1)*n + r, n)//((k - 1)*n + r)
    def T(n, k): return sum([totient(d)*u((n - 1)//d, k, k//d) for d in divisors(gcd(n - 1, k))])//k
    for n in range(1, 11): print([T(n, k) for k in range(3, 9)]) # Indranil Ghosh, Dec 13 2017, after PARI

Formula

T(n,k) = Sum_{d|gcd(n-1,k)} phi(d)*u((n-1)/d, k, k/d)/k where u(n,k,r) = r*binomial((k - 1)*n + r, n)/((k - 1)*n + r).
T(n,k) ~ n*A070914(n,k-2)/(n*(k-2)+2) for fixed k.

A295259 Array read by antidiagonals: T(n,k) = number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals rooted at a cell up to rotation and reflection (k >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 4, 13, 16, 1, 1, 6, 22, 64, 52, 1, 1, 6, 35, 147, 315, 170, 1, 1, 8, 49, 302, 1074, 1727, 579, 1, 1, 8, 67, 518, 2763, 8216, 9658, 1996, 1, 1, 10, 87, 843, 5916, 27168, 64798, 55657, 7021
Offset: 1

Views

Author

Andrew Howroyd, Nov 18 2017

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called f.

Examples

			Array begins:
  =========================================================
  n\k|    3      4       5        6         7         8
  ---|-----------------------------------------------------
   1 |    1      1       1        1         1         1 ...
   2 |    1      1       1        1         1         1 ...
   3 |    2      4       4        6         6         8 ...
   4 |    6     13      22       35        49        67 ...
   5 |   16     64     147      302       518       843 ...
   6 |   52    315    1074     2763      5916     11235 ...
   7 |  170   1727    8216    27168     70984    159180 ...
   8 |  579   9658   64798   274360    876790   2319678 ...
   9 | 1996  55657  521900  2837208  11069760  34582800 ...
  10 | 7021 325390 4272967 29828330 142148343 524470485 ...
  ...
		

Crossrefs

Columns k=3..5 are A003446, A005035, A005039.

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    F[n_, k_] := DivisorSum[GCD[n-1, k], EulerPhi[#]*u[(n-1)/#, k, k/#] &]/k;
    T[n_, k_] := (F[n, k] + If[OddQ[k], If[OddQ[n], u[(n-1)/2, k, (k-1)/2], u[n/2-1, k, k-1]], If[OddQ[n], u[(n-1)/2, k, k/2+1], u[n/2-1, k, k]]])/2;
    Table[T[n-k-1, k], {n, 1, 14}, {k, n-2, 3, -1}] // Flatten (* Jean-François Alcover, Jan 19 2018, translated from PARI *)
  • PARI
    \\ here u is Fuss-Catalan sequence with p = k+1.
    u(n,k,r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    F(n,k) = {sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d,k,k/d))/k}
    T(n,k) = {(F(n,k) + if(k%2, if(n%2, u((n-1)/2,k,(k-1)/2), u(n/2-1,k,(k-1))), if(n%2, u((n-1)/2,k,k/2+1), u(n/2-1,k,k)) ))/2;}
    for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);
    
  • Python
    from sympy import binomial, gcd, totient, divisors
    def u(n, k, r): return r*binomial((k - 1)*n + r, n)//((k - 1)*n + r)
    def F(n, k): return sum([totient(d)*u((n - 1)//d, k, k//d) for d in divisors(gcd(n - 1, k))])//k
    def T(n, k): return (F(n, k) + ((u((n - 1)//2, k, (k - 1)//2) if n%2 else u(n//2 - 1, k, k - 1)) if k%2 else (u((n - 1)//2, k, k//2 + 1) if n%2 else u(n//2 - 1, k, k))))//2
    for n in range(1, 11): print([T(n, k) for k in range(3, 9)]) # Indranil Ghosh, Dec 13 2017, after PARI code

Formula

T(n,k) ~ A295222(n,k)/2 for fixed k.
Showing 1-10 of 15 results. Next