cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A002212 Number of restricted hexagonal polyominoes with n cells.

Original entry on oeis.org

1, 1, 3, 10, 36, 137, 543, 2219, 9285, 39587, 171369, 751236, 3328218, 14878455, 67030785, 304036170, 1387247580, 6363044315, 29323149825, 135700543190, 630375241380, 2938391049395, 13739779184085, 64430797069375, 302934667061301, 1427763630578197
Offset: 0

Views

Author

N. J. A. Sloane, Ronald C. Read

Keywords

Comments

Number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0) with no peaks at odd level. Example: a(2)=3 because we have UUDD, UHD and HH. - Emeric Deutsch, Dec 06 2003
Number of 3-Motzkin paths of length n-1 (i.e., lattice paths from (0,0) to (n-1,0) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and three types of steps H=(1,0)). Example: a(4)=36 because we have 27 HHH paths, 3 HUD paths, 3 UHD paths and 3 UDH paths. - Emeric Deutsch, Jan 22 2004
Number of rooted, planar trees having edges weighted by strictly positive integers (multi-trees) with weight-sum n. - Roland Bacher, Feb 28 2005
Number of skew Dyck paths of semilength n. A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. - Emeric Deutsch, May 10 2007
Equivalently, number of self-avoiding paths of semilength n in the first quadrant beginning at the origin, staying weakly above the diagonal, ending on the diagonal, and consisting of steps r=(+1,0) (right), U=(0,+1) (up), and D=(0,-1) (down). Self-avoidance implies that factors UD and DU and steps D reaching the diagonal before the end are forbidden. The a(3) = 10 such paths are UrUrUr, UrUUrD, UrUUrr, UUrrUr, UUrUrD, UUrUrr, UUUDrD, UUUrDD, UUUrrD, and UUUrrr. - Joerg Arndt, Jan 15 2024
Hankel transform of [1,3,10,36,137,543,...] is A000012 = [1,1,1,1,...]. - Philippe Deléham, Oct 24 2007
From Gary W. Adamson, May 17 2009: (Start)
Convolved with A026375, (1, 3, 11, 45, 195, ...) = A026378: (1, 4, 17, 75, ...)
(1, 3, 10, 36, 137, ...) convolved with A026375 = A026376: (1, 6, 30, 144, ...).
Starting (1, 3, 10, 36, ...) = INVERT transform of A007317: (1, 2, 5, 15, 51, ...). (End)
Binomial transform of A032357. - Philippe Deléham, Sep 17 2009
a(n) = number of rooted trees with n vertices in which each vertex has at most 2 children and in case a vertex has exactly one child, it is labeled left, middle or right. These are the hex trees of the Deutsch, Munarini, Rinaldi link. This interpretation yields the second MATHEMATICA recurrence below. - David Callan, Oct 14 2012
The left shift (1,3,10,36,...) of this sequence is the binomial transform of the left-shifted Catalan numbers (1,2,5,14,...). Example: 36 =1*14 + 3*5 + 3*2 + 1*1. - David Callan, Feb 01 2014
Number of Schroeder paths from (0,0) to (2n,0) with no level steps H=(2,0) at even level. Example: a(2)=3 because we have UUDD, UHD and UDUD. - José Luis Ramírez Ramírez, Apr 27 2015
This is the Riordan transform with the Riordan matrix A097805 (of the associated type) of the Catalan sequence A000108. See a Feb 17 2017 comment in A097805. - Wolfdieter Lang, Feb 17 2017
a(n) is the number of parking functions of size n avoiding the patterns 132 and 231. - Lara Pudwell, Apr 10 2023

Examples

			G.f. = 1 + x + 3*x^2 + 10*x^3 + 36*x^4 + 137*x^5 + 543*x^6 + 2219*x^7 + 9285*x^8 + ...
		

References

  • J. Brunvoll, B. N. Cyvin, and S. J. Cyvin, Studies of some chemically relevant polygonal systems: mono-q-polyhexes, ACH Models in Chem., 133 (3) (1996), 277-298, Eq 14.
  • S. J. Cyvin, J. Brunvoll, G. Xiaofeng, and Z. Fuji, Number of perifusenes with one internal vertex, Rev. Roumaine Chem., 38(1) (1993), 65-78.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences of A007317.
Row sums of triangle A104259.

Programs

  • Magma
    I:= [1,3]; [1] cat [n le 2 select I[n]  else ((6*n-3)*Self(n-1)-5*(n-2)*Self(n-2)) div (n+1): n in [1..30]]; // Vincenzo Librandi, Jun 15 2015
  • Maple
    t1 := series(1+ (1-3*x-(1-x)^(1/2)*(1-5*x)^(1/2))/(2*x), x, 50):
    A002212_list := len -> seq(coeff(t1,x,n),n=0..len): A002212_list(40);
    a[0] := 1: a[1] := 1: for n from 2 to 50 do a[n] := (3*(2*n-1)*a[n-1]-5*(n-2)*a[n-2])/(n+1) od: print(convert(a,list)); # Zerinvary Lajos, Jan 01 2007
    a := n -> `if`(n=0,1,simplify(GegenbauerC(n-1, -n, -3/2)/n)):
    seq(a(n), n=0..23); # Peter Luschny, May 09 2016
  • Mathematica
    InverseSeries[Series[(y)/(1+3*y+y^2), {y, 0, 24}], x] (* then A(x)=1+y(x) *) (* Len Smiley, Apr 14 2000 *)
    (* faster *)
    a[0]=1;a[1]=1;
    a[n_]/;n>=2 := a[n] = a[n-1] +  Sum[a[i]a[n-1-i],{i,0,n-1}];
    Table[a[n],{n,0,14}] (* See COMMENTS above, [David Callan, Oct 14 2012] *)
    (* fastest *)
    s[0]=s[1]=1;
    s[n_]/;n>=2 := s[n] = (3(2n-1)s[n-1]-5(n-2)s[n-2])/(n+1);
    Table[s[n],{n,0,14 }] (* See Deutsch, Munarini, Rinaldi link, [David Callan, Oct 14 2012] *)
    (* 2nd fastest *)
    a[n_] := Hypergeometric2F1[3/2, 1-n, 3, -4]; a[0]=1; Table[a[n], {n, 0, 14}]  (* Jean-François Alcover, May 16 2013 *)
    CoefficientList[Series[(1 - x - Sqrt[1 - 6x + 5x^2])/(2x), {x, 0, 20}], x] (* Nikolaos Pantelidis, Jan 30 2023 *)
  • Maxima
    makelist(sum(binomial(n,k)*binomial(n-k,k)*3^(n-2*k)/(k+1),k,0,n/2),n,0,24); /* for a(n+1) */ /* Emanuele Munarini, May 18 2011 */
    
  • PARI
    {a(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1)};
    
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( serreverse( x / (1 + 3*x + x^2) + x * O(x^n)), n))}; /* Michael Somos */
    
  • PARI
    my(N=66,x='x+O('x^N)); Vec((1 - x - sqrt(1-6*x+5*x^2))/(2*x)) \\ Joerg Arndt, Jan 13 2024
    
  • Sage
    def A002212():
        x, y, n = 1, 1, 1
        while True:
            yield x
            n += 1
            x, y = y, ((6*n - 3)*y - (5*n - 10)*x) / (n + 1)
    a = A002212()
    [next(a) for i in range(24)]  # Peter Luschny, Oct 12 2013
    

Formula

a(0)=1, for n > 0: a(n) = Sum_{j=0..n-1} Sum_{i=0..j} a(i)*a(j-i). G.f.: A(x) = 1 + x*A(x)^2/(1-x). - Mario Catalani (mario.catalani(AT)unito.it), Jun 19 2003
a(n) = Sum_{i=ceiling((n-1)/2)..n-1} (3^(2i+1-n)*binomial(n, i)*binomial(i, n-i-1))/n. - Emeric Deutsch, Jul 23 2002
a(n) = Sum_{k=1..n} binomial(2k, k)*binomial(n-1, k-1)/(k+1), i.e., binomial transform of the Catalan numbers 1, 2, 5, 14, 42, ... (A000108). a(n) = Sum_{k=0..floor((n-1)/2)} 3^(n-1-2*k)*binomial(2k, k)*binomial(n-1, 2k)/(k+1). - Emeric Deutsch, Aug 05 2002
D-finite with recurrence: a(1)=1, a(n) = (3(2n-1)*a(n-1)-5(n-2)*a(n-2))/(n+1) for n > 1. - Emeric Deutsch, Dec 18 2002
a(n) is asymptotic to c*5^n/n^(3/2) with c=0.63.... - Benoit Cloitre, Jun 23 2003
In closed form, c = (1/2)*sqrt(5/Pi) = 0.63078313050504... - Vaclav Kotesovec, Oct 04 2012
Reversion of Sum_{n>0} a(n)x^n = -Sum_{n>0} A001906(n)(-x)^n.
G.f. A(x) satisfies xA(x)^2 + (1-x)(1-A(x)) = 0.
G.f.: (1 - x - sqrt(1 - 6x + 5x^2))/(2x). For n > 1, a(n) = 3*a(n-1) + Sum_{k=1..n-2} a(k)*a(n-k-1). - John W. Layman, Feb 22 2001
The Hankel transform of this sequence gives A001519 = 1, 2, 5, 13, 34, 89, ... E.g., Det([1, 1, 3, 10, 36; 1, 3, 10, 36, 137; 3, 10, 36, 137, 543; 10, 36, 137, 543, 2219; 36, 137, 543, 2219, 9285 ])= 34. - Philippe Deléham, Jan 25 2004
a(m+n+1) = Sum_{k>=0} A091965(m, k)*A091965(n, k) = A091965(m+n, 0). - Philippe Deléham, Sep 14 2005
a(n+1) = Sum_{k=0..n} 2^(n-k)*M(k)*binomial(n,k), where M(k) = A001006(k) is the k-th Motzkin number (from here it follows that a(n+1) and M(n) have the same parity). - Emeric Deutsch, May 10 2007
a(n+1) = Sum_{k=0..n} A097610(n,k)*3^k. - Philippe Deléham, Oct 02 2007
G.f.: 1/(1-x/(1-x-x/(1-x/(1-x-x/(1-x/(1-x-x/(1-... (continued fraction). - Paul Barry, May 16 2009
G.f.: (1-x)/(1-2x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-.... (continued fraction). - Paul Barry, Oct 17 2009
G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1-x) (continued fraction); more generally g.f. C(x/(1-x)) where C(x) is the g.f. for the Catalan numbers (A000108). - Joerg Arndt, Mar 18 2011
a(n) = -5^(1/2)/(10*(n+1)) * (5*hypergeom([1/2, n], [1], 4/5) -3*hypergeom([1/2, n+1], [1], 4/5)) (for n>0). - Mark van Hoeij, Nov 12 2009
For n >= 1, a(n) = (1/(2*Pi))*Integral_{x=1..5} x^(n-1)*sqrt((x-1)*(5-x)) dx. - Groux Roland, Mar 16 2011
a(n+1) = [x^n](1-x^2)(1+3*x+x^2)^n. - Emanuele Munarini, May 18 2011
From Gary W. Adamson, Jul 21 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows (with 3,2,2,2,... as the main diagonal):
3, 1, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, ...
1, 1, 2, 1, 0, 0, ...
1, 1, 1, 2, 1, 0, ...
1, 1, 1, 1, 2, 0, ...
...
Alternatively, let M = the previous matrix but change the 3 to a 2. Then a(n) = sum of top row terms of M^(n-1). (End)
a(n) = hypergeometric([1-n,3/2],[3],-4), for n>0. - Peter Luschny, Aug 15 2012
a(n) = GegenbauerC(n-1, -n, -3/2)/n for n >= 1. - Peter Luschny, May 09 2016
E.g.f.: 1 + Integral (exp(3*x) * BesselI(1,2*x) / x) dx. - Ilya Gutkovskiy, Jun 01 2020
G.f.: 1 + x/G(0) with G(k) = (1 - 3*x - x^2/G(k+1)) (continued fraction). - Nikolaos Pantelidis, Dec 12 2022
From Peter Bala, Feb 03 2024: (Start)
G.f.: 1 + x/(1 - x) * c(x/(1 - x))^2 = 1 + x/(1 - 5*x) * c(-x/(1 - 5*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
a(n+1) = Sum_{k = 0..n} binomial(n, k)*Catalan(k+1).
a(n+1) = hypergeom([-n, 3/2], [3], -4).
a(n+1) = 5^n * Sum_{k = 0..n} (-5)^(-k)*binomial(n, k)*Catalan(k+1).
a(n+1) = 5^n * hypergeom([-n, 3/2], [3], 4/5). (End)

A002294 a(n) = binomial(5*n, n)/(4*n + 1).

Original entry on oeis.org

1, 1, 5, 35, 285, 2530, 23751, 231880, 2330445, 23950355, 250543370, 2658968130, 28558343775, 309831575760, 3390416787880, 37377257159280, 414741863546285, 4628362722856425, 51912988256282175, 584909606696793885, 6617078646960613370
Offset: 0

Views

Author

Keywords

Comments

From Wolfdieter Lang, Sep 14 2007: (Start)
a(n), n >= 1, enumerates quintic trees (rooted, ordered, incomplete) with n vertices (including the root).
This is the Pfaff-Fuss-Catalan sequence C^{m}_n for m = 5. See the Graham et al. reference, p. 347. eq. 7.66. See also the Pólya-Szegő reference.
Also 5-Raney sequence. See the Graham et al. reference, pp. 346-347. (End)
a(n) = A258708(3*n, 2*n) for n > 0. - Reinhard Zumkeller, Jun 23 2015
Conjecturally, a(n) is the number of 4-uniform words on the alphabet [n] that avoid the patterns 231 and 221 (see the Defant and Kravitz link). - Colin Defant, Sep 26 2018
From Stillwell (1995), p. 62: "Eisenstein's Theorem. If y^5 + y = x, then y has a power series expansion y = x - x^5 + 10*x^9/2^1 - 15 * 14 * x^13/3! + 20 * 19 * 18*x^17/4! - ...." - Michael Somos, Sep 19 2019
a(n) is the total number of down steps before the first up step in all 4_1-Dyck paths of length 5*n. A 4_1-Dyck path is a lattice path with steps (1, 4), (1, -1) that starts and ends at y = 0 and stays above the line y = -1. - Sarah Selkirk, May 10 2020
Dropping the first 1 (starting from 1, 5, 35, ... with offset 1), the series reversion gives 1, -5, 15, -35, 70, ... (again offset 1), essentially A000332 and row 5 of A027555. - R. J. Mathar, Aug 17 2023
Number of rooted polyominoes composed of n hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}. A rooted polyomino has one external edge identified, and chiral pairs are counted as two. A stereographic projection of the {6,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 27 2024
This is instance k = 5 of the generalized Catalan family {C(k, n)}_{n>=0} given in a comment of A130564. - Wolfdieter Lang, Feb 05 2024

Examples

			There are a(2) = 5 quintic trees (vertex degree <= 5 and 5 possible branchings) with 2 vertices (one of them the root). Adding one more branch (one more vertex) to these five trees yields 5*5 + binomial(5,2) = 35 = a(3) such trees.
G.f. = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + 23751*x^6 + 231880*x^7 + ...
G.f. = t + t^5 + 5*t^9 + 35*t^13 + 285*t^17 + 2530*t^21 + 23751*t^25 + 231880*t^29 + ...
		

References

  • Archiv der Mathematik u. Physik, Editor's note: "Über die Bestimmung der Anzahl der verschiedenen Arten, auf welche sich ein n-Eck durch Diagonalen in lauter m-Ecke zerlegen laesst, mit Bezug auf einige Abhandlungen der Herren Lame, Rodrigues, Binet, Catalan und Duhamel in dem Journal de Mathematiques pures et appliquees, publie par Joseph Liouville. T. III. IV.", Archiv der Mathematik u. Physik, 1 (1841), pp. 193ff; see especially p. 198.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 23.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, pp. 200, 347.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, New York, 2 vols., 1972, Vol. 1, problem 211, p. 146 with solution on p. 348.
  • Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nürnberg, Jul 27 1994.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001764, A002296, A258708, A346647 (binomial transform), A346665 (inverse binomial transform).
Fourth column of triangle A062993.
Polyominoes: A221184{n-1} (oriented), A004127 (unoriented), A369473 (chiral), A143546 (achiral), A002293 {5,oo}, A002295 {7,oo}.
Cf. A130564.

Programs

  • GAP
    List([0..22],n->Binomial(5*n,n)/(4*n+1)); # Muniru A Asiru, Nov 01 2018
  • Haskell
    a002294 n = a002294_list !! n
    a002294_list = [a258708 (3 * n) (2 * n) | n <- [1..]]
    -- Reinhard Zumkeller, Jun 23 2015
    
  • Magma
    [ Binomial(5*n,n)/(4*n+1): n in [0..100]]; // Vincenzo Librandi, Mar 24 2011
    
  • Maple
    seq(binomial(5*k+1,k)/(5*k+1),k=0..30); # Robert FERREOL, Apr 03 2015
    n:=30:G:=series(RootOf(g = 1+x*g^5, g),x=0,n+1):seq(coeff(G,x,k),k=0..n); # Robert FERREOL, Apr 03 2015
  • Mathematica
    CoefficientList[InverseSeries[ Series[ y - y^5, {y, 0, 100}], x], x][[Range[2, 100, 4]]]
    Table[Binomial[5n,n]/(4n+1),{n,0,20}] (* Harvey P. Dale, Dec 30 2011 *)
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1, 2, 3, 4}/5, {2, 3, 5}/4, x 5^5/4^4], {x, 0, n}]; (* Michael Somos, May 06 2015 *)
    a[ n_] := With[{m = 4 n + 1}, SeriesCoefficient[ InverseSeries @ Series[ x - x^5, {x, 0, m}], {x, 0, m}]]; (* Michael Somos, May 06 2015 *)
  • PARI
    {a(n) = binomial( 5 * n, n) / (4*n + 1)}; /* Michael Somos, Mar 17 2011 */
    
  • PARI
    {a(n) = if( n<0, 0, n = 4*n + 1; polcoeff( serreverse( x - x^5 + x * O(x^n) ), n))}; /* Michael Somos, Mar 17 2011 */
    

Formula

For the connection with the solution of the quintic, hypergeometric series, and Lagrange inversion, see Beukers (2014). - N. J. A. Sloane, Mar 12 2014
G.f.: hypergeometric([1, 2, 3, 4] / 5, [2, 3, 5] / 4, x * 5^5 / 4^4). - Michael Somos, Mar 17 2011
O.g.f. A(x) satisfies A(x) = 1 + x * A(x)^5 = 1 / (1 - x * A(x)^4).
Given g.f. A(x) then z = t * A(t^4) satisfies 0 = z^5 - z + t. - Michael Somos, Mar 17 2011
a(n) = binomial(5*n, n - 1)/n, n >= 1, a(0) = 1. From the Lagrange series of the o.g.f. A(x) with its above given implicit equation.
a(n) = upper left term in M^n, M = the production matrix:
1, 1;
4, 4, 1;
10, 10, 4, 1;
20, 20, 10, 4, 1;
...
where (1, 4, 10, 20, ...) is the tetrahedral sequence, A000292. - Gary W. Adamson, Jul 08 2011
D-finite with recurrence: 8*n*(4*n+1)*(2*n-1)*(4*n-1)*a(n) - 5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 02 2014
a(n) = binomial(5*n + 1, n)/(5*n + 1) = A062993(n+3,3). - Robert FERREOL, Apr 03 2015
a(0) = 1; a(n) = Sum_{i1 + i2 + ... + i5 = n - 1} a(i1) * a(i2) * ... *a(i5) for n >= 1. - Robert FERREOL, Apr 03 2015
From Ilya Gutkovskiy, Jan 15 2017: (Start)
O.g.f.: 5F4([1/5, 2/5, 3/5, 4/5, 1]; [1/2, 3/4, 1, 5/4]; 3125*x/256).[Cancellation of the 1s, see G.f. the above. - Wolfdieter Lang, Feb 05 2024]
E.g.f.: 4F4([1/5, 2/5, 3/5, 4/5]; [1/2, 3/4, 1, 5/4]; 3125*x/256).
a(n) ~ 5^(5*n + 1/2)/(sqrt(Pi) * 2^(8*n + 7/2) * n^(3/2)). (End)
x*A'(x)/A(x) = (A(x) - 1)/(- 4*A(x) + 5) = x + 9*x^2 + 91*x^3 + 969*x^4 + ... is the o.g.f. of A163456. Cf. A001764 and A002293 - A002296. - Peter Bala, Feb 04 2022
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^9). - Seiichi Manyama, Jun 16 2025

Extensions

More terms from Olivier Gérard, Jul 05 2001

A001998 Bending a piece of wire of length n+1; walks of length n+1 on a tetrahedron; also non-branched catafusenes with n+2 condensed hexagons.

Original entry on oeis.org

1, 2, 4, 10, 25, 70, 196, 574, 1681, 5002, 14884, 44530, 133225, 399310, 1196836, 3589414, 10764961, 32291602, 96864964, 290585050, 871725625, 2615147350, 7845353476, 23535971854, 70607649841, 211822683802, 635467254244, 1906400965570, 5719200505225, 17157599124190
Offset: 0

Views

Author

Keywords

Comments

The wire stays in the plane, there are n bends, each is R,L or O; turning the wire over does not count as a new figure.
Equivalently, walks of n+1 steps on a tetrahedron, visiting n+2 vertices, with n "corners"; the symmetry group is S4, reversing a walk does not count as different. Simply interpret R,L,O as instructions to turn R, turn L, or retrace the last step. Walks are not self-avoiding.
Also, it appears that a(n) gives the number of equivalence classes of n-tuples of 0, 1 and 2, where two n-tuples are equivalent if one can be obtained from the other by a sequence of operations R and C, where R denotes reversal and C denotes taking the 2's complement (C(x)=2-x). This has been verified up to a(19)=290585050. Example: for n=3 there are ten equivalence classes {000, 222}, {001, 100, 122, 221}, {002, 022, 200, 220}, {010, 212}, {011, 110, 112, 211}, {012, 210}, {020, 202}, {021, 102, 120, 201}, {101, 121}, {111}, so a(3)=10. - John W. Layman, Oct 13 2009
There exists a bijection between chains of n+2 hexagons and the above described equivalence classes of n-tuples of 0,1, and 2. Namely, for a given chain of n+2 hexagons we take the sequence of the numbers of vertices of degree 2 (0, 1, or 2) between the consecutive contact vertices on one side of the chain; switching to the other side we obtain the 2's complement of this sequence; reversing the order of the hexagons, we obtain the reverse sequence. The inverse mapping is straightforward. For example, to a linear chain of 7 hexagons there corresponds the 5-tuple 11111. - Emeric Deutsch, Apr 22 2013
If we treat two wire bends (or walks, or tuples) related by turning over (or reversing) as different in any of the above-given interpretations of this sequence, we get A007051 (or A124302). Also, a(n-1) is the sum of first 3 terms in n-th row of A284949, see crossrefs therein. - Andrey Zabolotskiy, Sep 29 2017
a(n-1) is the number of color patterns (set partitions) in an unoriented row of length n using 3 or fewer colors (subsets). - Robert A. Russell, Oct 28 2018
From Allan Bickle, Jun 02 2022: (Start)
a(n) is the number of (unlabeled) 3-paths with n+6 vertices. (A 3-path with order n at least 5 can be constructed from a 4-clique by iteratively adding a new 3-leaf (vertex of degree 3) adjacent to an existing 3-clique containing an existing 3-leaf.)
Recurrences appear in the papers by Bickle, Eckhoff, and Markenzon et al. (End)
a(n) is also the number of distinct planar embeddings of the (n+1)-alkane graph (up to at least n=9, and likely for all n). - Eric W. Weisstein, May 21 2024

Examples

			There are 2 ways to bend a piece of wire of length 2 (bend it or not).
For n=4 and a(n-1)=10, the 6 achiral patterns are AAAA, AABB, ABAB, ABBA, ABCA, and ABBC.  The 4 chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB. - _Robert A. Russell_, Oct 28 2018
		

References

  • A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 75.
  • S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem. 134 (1997), 55-70.
  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
  • R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [I think this reference does not mention this sequence. - N. J. A. Sloane, Aug 10 2006]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A320750, offset by one. Column k = 0 of A323942, offset by two.
Cf. A124302 (oriented), A107767 (chiral), A182522 (achiral), with varying offsets.
Column 3 of A320750.
The numbers of unlabeled k-paths for k = 2..7 are given in A005418, A001998, A056323, A056324, A056325, and A345207, respectively.
The sequences above converge to A103293(n+1).

Programs

  • GAP
    a:=[];; for n in [2..45] do if n mod 2 =0 then Add(a,((3^((n-2)/2)+1)/2)^2); else Add(a,  3^((n-3)/2)+(1/4)*(3^(n-2)+1)); fi; od; a; # Muniru A Asiru, Oct 28 2018
  • Maple
    A001998 := proc(n) if n = 0 then 1 elif n mod 2 = 1 then (1/4)*(3^n+4*3^((n-1)/2)+1) else (1/4)*(3^n+2*3^(n/2)+1); fi; end;
    A001998:=(-1+3*z+2*z**2-8*z**3+3*z**4)/(z-1)/(3*z-1)/(3*z**2-1); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence with an extra leading 1
  • Mathematica
    a[n_?OddQ] := (1/4)*(3^n + 4*3^((n - 1)/2) + 1); a[n_?EvenQ] := (1/4)*(3^n + 2*3^(n/2) + 1); Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jan 25 2013, from formula *)
    LinearRecurrence[{4,0,-12,9},{1,2,4,10},30] (* Harvey P. Dale, Apr 10 2013 *)
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k=3; Table[Sum[StirlingS2[n,j]+Ach[n,j],{j,k}]/2,{n,40}] (* Robert A. Russell, Oct 28 2018 *)
  • PARI
    Vec((1-2*x-4*x^2+6*x^3)/((1-x)*(1-3*x)*(1-3*x^2)) + O(x^50)) \\ Colin Barker, May 15 2016
    

Formula

a(n) = if n mod 2 = 0 then ((3^((n-2)/2)+1)/2)^2 else 3^((n-3)/2)+(1/4)*(3^(n-2)+1).
G.f.: (1-2*x-4*x^2+6*x^3) / ((1-x)*(1-3*x)*(1-3*x^2)). - Corrected by Colin Barker, May 15 2016
a(n) = 4*a(n-1)-12*a(n-3)+9*a(n-4), with a(0)=1, a(1)=2, a(2)=4, a(3)=10. - Harvey P. Dale, Apr 10 2013
a(n) = (1+3^n+3^(1/2*(-1+n))*(2-2*(-1)^n+sqrt(3)+(-1)^n*sqrt(3)))/4. - Colin Barker, May 15 2016
E.g.f.: (2*sqrt(3)*sinh(sqrt(3)*x) + 3*exp(2*x)*cosh(x) + 3*cosh(sqrt(3)*x))/6. - Ilya Gutkovskiy, May 15 2016
From Robert A. Russell, Oct 28 2018: (Start)
a(n-1) = (A124302(n) + A182522(n)) / 2 = A124302(n) - A107767(n-1) = A107767(n-1) + A182522(n).
a(n-1) = Sum_{j=1..k} (S2(n,j) + Ach(n,j)) / 2, where k=3 is the maximum number of colors, S2 is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
a(n-1) = A057427(n) + A056326(n) + A056327(n). (End)
a(2*n) = A007051(n)^2; a(2*n+1) = A007051(n)*A007051(n+1). - Todd Simpson, Mar 25 2024

Extensions

Offset and Maple code corrected by Colin Mallows, Nov 12 1999
Term added by Robert A. Russell, Oct 30 2018

A143546 G.f. A(x) satisfies A(x) = 1 + x*A(x)^3*A(-x)^2.

Original entry on oeis.org

1, 1, 1, 3, 5, 18, 35, 136, 285, 1155, 2530, 10530, 23751, 100688, 231880, 996336, 2330445, 10116873, 23950355, 104819165, 250543370, 1103722620, 2658968130, 11777187240, 28558343775, 127067830773, 309831575760, 1383914371728, 3390416787880, 15194457001440
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2008

Keywords

Comments

Number of achiral polyominoes composed of n hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}. A stereographic projection of the {6,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 23 2024
Number of achiral noncrossing partitions composed of n blocks of size 5. - Andrew Howroyd, Feb 08 2024

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 18*x^5 + 35*x^6 + 136*x^7 + ...
A(x) = 1 + x*A(x)^3*A(-x)^2 where
A(x)^3 = 1 + 3x + 6x^2 + 16x^3 + 39x^4 + 114x^5 + 304x^6 + 936x^7 + ...
A(-x)^2 = 1 - 2x + 3x^2 - 8x^3 + 17x^4 - 52x^5 + 125x^6 - 408x^7 + ...
Also, A(x) = G(x^2) + x*G(x^2)^3 where
G(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + 23751*x^6 + ...
G(x)^3 = 1 + 3*x + 18*x^2 + 136*x^3 + 1155*x^4 + 10530*x^5 + ...
		

Crossrefs

Column k=5 of A369929 and k=6 of A370062.
Cf. A118970.
Polyominoes: A221184(n-1) (oriented), A004127 (unoriented), A369473 (chiral), A002294 (rooted), A047749 {4,oo}, A369472 {5,oo}.

Programs

  • Mathematica
    terms = 28;
    A[] = 1; Do[A[x] = 1 + x A[x]^3 A[-x]^2 + O[x]^terms // Normal, {terms}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Jul 24 2018 *)
    p=6; Table[If[EvenQ[n],Binomial[(p-1)n/2,n/2]/((p-2)n/2+1),If[OddQ[p],(p-1)Binomial[(p-1)n/2-1,(n-1)/2]/((p-2)n+1),p Binomial[(p-1)n/2-1/2,(n-1)/2]/((p-2)n+2)]],{n,0,35}] (* Robert A. Russell, Jan 23 2024 *)
  • PARI
    {a(n)=my(A=1+O(x^(n+1)));for(i=0,n,A=1+x*A^3*subst(A^2,x,-x));polcoef(A,n)}
    
  • PARI
    {a(n)=my(m=n\2,p=2*(n%2)+1);binomial(5*m+p-1,m)*p/(4*m+p)}

Formula

G.f.: A(x) = G(x^2) + x*G(x^2)^3 where G(x) = 1 + x*G(x)^5 is the g.f. of A002294.
a(2n) = binomial(5*n,n)/(4*n+1); a(2n+1) = binomial(5*n+2,n)*3/(4*n+3).
From Robert A. Russell, Jan 23 2024: (Start)
a(n+2)/a(n) ~ 3125/256. a(2m+1)/a(2m) ~ 75/16; a(2m)/a(2m-1) ~ 125/48.
a(n) = 2*A004127(n) - A221184(n-1) = A221184(n-1) - 2*A369473(n) = A004127(n) - A369473(n). (End)
a(2m) = A002294(m) ~ (5^5/4^4)^m*sqrt(5/(2*Pi*(4*m)^3)). - Robert A. Russell, Jul 15 2024
From Seiichi Manyama, Jul 07 2025: (Start)
G.f. A(x) satisfies A(x)*A(-x) = (A(x) + A(-x))/2 = G(x^2), where G(x) = 1 + x*G(x)^5 is the g.f. of A002294.
a(0) = 1; a(n) = Sum_{i, j, k>=0 and i+2*j+2*k=n-1} a(i) * a(2*j) * a(2*k). (End)
a(0) = 1; a(n) = Sum_{i, j, k, l, m>=0 and i+j+k+l+m=n-1} (-1)^(i+j) * a(i) * a(j) * a(k) * a(l) * a(m). - Seiichi Manyama, Jul 08 2025

A295260 Array read by antidiagonals: T(n,k) = number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals up to rotation and reflection (k >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 5, 4, 1, 1, 3, 8, 16, 12, 1, 1, 3, 12, 33, 60, 27, 1, 1, 4, 16, 68, 194, 261, 82, 1, 1, 4, 21, 112, 483, 1196, 1243, 228, 1, 1, 5, 27, 183, 1020, 3946, 8196, 6257, 733, 1, 1, 5, 33, 266, 1918, 10222, 34485, 58140, 32721, 2282
Offset: 1

Views

Author

Andrew Howroyd, Nov 18 2017

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called h.
T(n,k) is the number of unoriented polyominoes containing n k-gonal tiles of the hyperbolic regular tiling with Schläfli symbol {k,oo}. Stereographic projections of several of these tilings on the Poincaré disk can be obtained via the Christensson link. For unoriented polyominoes, chiral pairs are counted as one. T(n,2) could represent polyominoes of the Euclidean regular tiling with Schläfli symbol {2,oo}; T(n,2) = 1. - Robert A. Russell, Jan 21 2024

Examples

			Array begins:
  ===================================================
  n\k|   3     4      5       6        7        8
  ---|-----------------------------------------------
   1 |   1     1      1       1        1        1 ...
   2 |   1     1      1       1        1        1 ...
   3 |   1     2      2       3        3        4 ...
   4 |   3     5      8      12       16       21 ...
   5 |   4    16     33      68      112      183 ...
   6 |  12    60    194     483     1020     1918 ...
   7 |  27   261   1196    3946    10222    22908 ...
   8 |  82  1243   8196   34485   109947   290511 ...
   9 | 228  6257  58140  315810  1230840  3844688 ...
  10 | 733 32721 427975 2984570 14218671 52454248 ...
  ...
		

Crossrefs

Columns k=3..7 are A000207, A005036, A005040, A004127, A005419.
Polyominoes: A295224 (oriented), A070914 (rooted).

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    T[n_, k_] := (u[n, k, 1] + If[OddQ[n], u[(n - 1)/2, k, Quotient[k, 2]], If[OddQ[k], (u[n/2 - 1, k, k - 1] + u[n/2, k, 1])/2, u[n/2, k, 1]]] + (If[EvenQ[n], u[n/2, k, 1]] - u[n, k, 2])/2 + DivisorSum[GCD[n - 1, k], EulerPhi[#]*u[(n - 1)/#, k, k/#] &]/k)/2 /. Null -> 0;
    Table[T[n - k + 2, k + 1], {n, 1, 11}, {k, n + 1, 2, -1}] // Flatten (* Jean-François Alcover, Dec 28 2017, after Andrew Howroyd *)
  • PARI
    \\ here u is Fuss-Catalan sequence with p = k+1.
    u(n,k,r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n,k) = {(u(n,k,1) + if(n%2, u((n-1)/2,k,k\2), if(k%2, (u(n/2-1,k,(k-1)) + u(n/2,k,1))/2, u(n/2,k,1))) + (if(n%2==0, u(n/2,k,1))-u(n,k,2))/2 + sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d,k,k/d))/k)/2}
    for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);

Formula

T(n,k) ~ A295222(n,k)/(2*n) for fixed k.

A005036 Number of nonequivalent dissections of a polygon into n quadrilaterals by nonintersecting diagonals up to rotation and reflection.

Original entry on oeis.org

1, 1, 2, 5, 16, 60, 261, 1243, 6257, 32721, 175760, 963900, 5374400, 30385256, 173837631, 1004867079, 5861610475, 34469014515, 204161960310, 1217145238485, 7299007647552, 44005602441840
Offset: 1

Views

Author

Keywords

Comments

Closed formula is given in my paper linked below. - Nikos Apostolakis, Aug 01 2018
Number of unoriented polyominoes composed of n square cells of the hyperbolic regular tiling with Schläfli symbol {4,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For unoriented polyominoes, chiral pairs are counted as one. - Robert A. Russell, Jan 20 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A295260.
Polyominoes: A005034 (oriented), A369315 (chiral), A047749 (achiral), A385149 (asymmetric), A001764 (rooted), A000207 {3,oo}, A005040 {5,oo}, A005038 {5,oo} (oriented).

Programs

  • Mathematica
    p=4; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)
    Table[(3Binomial[3n,n]/(2n+1)-Binomial[3n+1,n]/(n+1)-If[OddQ[n],-10Binomial[(3n-1)/2,(n-1)/2]-If[1==Mod[n,4],4Binomial[(3n-3)/4,(n-1)/4],0],-6Binomial[3n/2,n/2]]/(n+1))/8,{n,0,30}] (* Robert A. Russell, Jun 19 2025 *)

Formula

a(n) ~ 3^(3*n + 1/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n + 4)). - Vaclav Kotesovec, Mar 13 2016
a(n) = A005034(n) - A369315(n) = (A005034(n) + A047749(n)) / 2 = A369315(n) + A047749(n). - Robert A. Russell, Jan 19 2024
G.f.: (3*G(z) - G(z)^2 + 6*G(z^2) + 5z*G(z^2)^2 + 2z*G(z^4)) / 8, where G(z)=1+z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Jun 19 2025

Extensions

More terms from Sascha Kurz, Oct 13 2001
Name edited by Andrew Howroyd, Nov 20 2017

A002216 Harary-Read numbers: restricted hexagonal polyominoes (cata-polyhexes) with n cells.

Original entry on oeis.org

0, 1, 1, 2, 5, 12, 37, 123, 446, 1689, 6693, 27034, 111630, 467262, 1981353, 8487400, 36695369, 159918120, 701957539, 3101072051, 13779935438, 61557789660, 276327463180, 1245935891922, 5640868033058, 25635351908072, 116911035023017
Offset: 0

Views

Author

Keywords

Comments

Named after the American mathematician Frank Harary (1921-2005) and the British mathematician Ronald Cedric Read (1924-2019). - Amiram Eldar, Jun 22 2021

References

  • S. J. Cyvin, J. Brunvoll, X. F. Guo and F. J. Zhang, Number of perifusenes with one internal vertex, Rev. Roumaine Chem., Vol. 38, No. 1 (1993), pp. 65-77.
  • S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem., Vol. 134, No. 1 (1997), pp. 55-70.
  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • Wenchen He and Wenjie He, Generation and enumeration of planar polycyclic aromatic hydrocarbons, Tetrahedron, Vol. 42, No. 19 (1986), pp. 5291-5299. See Table 3.
  • J. V. Knop, K. Szymansky, Željko Jeričević and Nenad Trinajstić, On the total number of polyhexes, Match, Vol. 16 (1984), pp. 119-134.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Trinajstich, Z. Jerievi, J. V. Knop, W. R. Muller and K. Szymanski, Computer generation of isomeric structures, Pure & Appl. Chem., Vol. 55, No. 2 (1983), pp. 379-390.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(12+(1-5*x)^(3/2)*(1-x)^(3/2)+24*x-48*x^2- 24*x^3- 3*(3+5 x)*Sqrt[1-5*x^2]*Sqrt[1-x^2]-4*Sqrt[1-5*x^3]*Sqrt[1-x^3])/ (24*x^2),{x,0,40}],x] (* Harvey P. Dale, Dec 23 2013 *)

Formula

G.f.: (1/(24*x^2))*(12+24*x-48*x^2-24*x^3 +(1-x)^(3/2)*(1-5*x)^(3/2)-3*(3+5*x)*(1-x^2)^(1/2)*(1-5*x^2)^(1/2) -4*(1-x^3)^(1/2)*(1-5*x^3)^(1/2)).
a(n) = (1/2)[A002214(n)+A002215(n)], n>=1. - Emeric Deutsch, Dec 23 2003
a(n) ~ 5^(n+1/2)/(4*sqrt(Pi)*n^(5/2)). - Vaclav Kotesovec, Aug 09 2013

A005040 Number of nonequivalent dissections of a polygon into n pentagons by nonintersecting diagonals up to rotation and reflection.

Original entry on oeis.org

1, 1, 2, 8, 33, 194, 1196, 8196, 58140, 427975, 3223610, 24780752, 193610550, 1534060440, 12302123640, 99699690472, 815521503060, 6725991120004, 55882668179880, 467387136083296, 3932600361607809, 33269692212847056, 282863689410850236, 2415930985594609548
Offset: 1

Views

Author

Keywords

Comments

Number of unoriented polyominoes composed of n pentagonal cells of the hyperbolic regular tiling with Schläfli symbol {5,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For unoriented polyominoes, chiral pairs are counted as one. - Robert A. Russell, Jan 23 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=5 of A295260.
Polyominoes: A005038 (oriented), A369471 (chiral), A369472 (achiral), A000207 {3,oo}, A005036 {4,oo}, A004127 {6,oo}, A005419 {7,oo}.

Programs

  • Mathematica
    p=5; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)

Formula

See Mathematica code.
a(n) ~ 2^(8*n - 1/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n + 5/2)). - Vaclav Kotesovec, Mar 13 2016
a(n) = A005038(n) - A369471(n) = (A005038(n) + A369472(n)) / 2 = A369471(n) + A369472(n). - Robert A. Russell, Jan 23 2024

Extensions

More terms from Sascha Kurz, Oct 13 2001.
Name edited by Andrew Howroyd, Nov 20 2017.

A221184 Number of colored quivers in the 4-mutation class of a quiver of Dynkin type A_n.

Original entry on oeis.org

1, 1, 3, 19, 118, 931, 7756, 68685, 630465, 5966610, 57805410, 571178751, 5737638778, 58455577800, 602859152496, 6283968796705, 66119469155523, 701526880303315, 7498841128986109, 80696081185766970, 873654669882574580
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2013

Keywords

Comments

Also, number of nonequivalent dissections of a polygon into n+1 hexagons by nonintersecting diagonals up to rotation. - Andrew Howroyd, Nov 20 2017
Number of oriented polyominoes composed of n+1 hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Jan 23 2024

Crossrefs

Column k=6 of A295224.
Polyominoes: A004127 (unoriented), A369473 (chiral), A143546 (achiral), A001683(n+2) {3,oo}, A005034 {4,oo}, A005038 {5,oo}.

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    T[n_, k_] := u[n, k, 1] + (If[EvenQ[n], u[n/2, k, 1], 0] - u[n, k, 2])/2 + DivisorSum[GCD[n - 1, k], EulerPhi[#]*u[(n - 1)/#, k, k/#] &]/k;
    a[n_] := T[n + 1, 6];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *)
    p=6; Table[Binomial[(p-1)n,n]/(((p-2)n+1)((p-2)n+2))+If[OddQ[n],0,Binomial[(p-1)n/2,n/2]/((p-2)n+2)]+DivisorSum[GCD[p,n-1],EulerPhi[#]Binomial[((p-1)n+1)/#,(n-1)/#]/((p-1)n+1)&,#>1&],{n,30}] (* Robert A. Russell, Jan 23 2024 *)

Formula

a(n) ~ 5^(5*n + 11/2) / (sqrt(Pi) * n^(5/2) * 2^(8*n + 27/2)). - Vaclav Kotesovec, Jun 15 2018
a(n-1) = A004127(n) + A369473(n) = 2*A004127(n) - A143546(n) = 2*A369473(n) + A143546(n). - Robert A. Russell, Jan 23 2024

Extensions

a(0)=1 and a(18)-a(20) corrected by Andrew Howroyd, Nov 20 2017

A369473 Number of chiral pairs of polyominoes composed of n hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}.

Original entry on oeis.org

7, 50, 448, 3810, 34200, 314655, 2982040, 28897440, 285577500, 2868769045, 29227672960, 301429078080, 3141983233130, 33059729519325, 350763428176480, 3749420512083472, 40348040467611800, 436827334389425980
Offset: 4

Views

Author

Robert A. Russell, Jan 23 2024

Keywords

Comments

A stereographic projection of the {6,oo} tiling on the Poincaré disk can be obtained via the Christensson link. Each member of a chiral pair is a reflection but not a rotation of the other.

Crossrefs

Polyominoes: A221184(n-1) (oriented), A004127 (unoriented), A143546 (achiral), A369471 {5,oo}.

Programs

  • Mathematica
    p=6; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2))-If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)-Binomial[((p-1)n+1)/2, (n-1)/2]/((p-1)n+1)], Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+DivisorSum[GCD[p, n-1], EulerPhi[#]Binomial[((p-1)n+1)/#, (n-1)/#]/((p-1)n+1)&, #>1&])/2, {n, 4, 30}]

Formula

a(n) = A221184(n-1) - A004127(n) = (A221184(n-1) - A143546(n)) / 2 = A004127(n) - A143546(n).
Showing 1-10 of 11 results. Next