cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A001683 Number of one-sided triangulations of the disk; or flexagons of order n; or unlabeled plane trivalent trees (n-2 internal vertices, all of degree 3 and hence n leaves).

Original entry on oeis.org

1, 1, 1, 1, 4, 6, 19, 49, 150, 442, 1424, 4522, 14924, 49536, 167367, 570285, 1965058, 6823410, 23884366, 84155478, 298377508, 1063750740, 3811803164, 13722384546, 49611801980, 180072089896, 655977266884, 2397708652276, 8791599732140, 32330394085528
Offset: 2

Views

Author

Keywords

Comments

a(n) is the number of triangulations of an n-gon (equivalently, the number of vertices of the (n - 3)-dimensional associahedron) modulo the cyclic action [Bowman and Regev]. - N. J. A. Sloane, Dec 29 2012
a(n) is also the number of non-isomorphic cluster-tilted algebras of type A_(n-3), for n greater than or equal to 5. Equivalently it is the number of non-isomorphic quivers in the mutation class of any quiver with underlying graph A_(n-3) for n greater than or equal to 5. - Hermund A. Torkildsen (hermunda(AT)math.ntnu.no), Aug 06 2008
Number of oriented polyominoes composed of n-2 triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Jan 20 2024

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A295224.
A row or column of the array in A262586.
Polyominoes: A000207 (unoriented), A369314 (chiral), A208355(n-1) (achiral), A005034 {4,oo}, A007173 {3,3,oo}.

Programs

  • Maple
    C := n->binomial(2*n,n)/(n+1); c := x->if whattype(x) = integer then C(x) else 0; fi; A001683 := n->C(n-2)/n + c(n/2-1)/2+(2/3)*c(n/3-1);
  • Mathematica
    p=3; Table[Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) +If[OddQ[n], 0, Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1}]], {n, 0, 20}] (* Robert A. Russell, Dec 11 2004 *)
    Rest[Rest[CoefficientList[Series[(6 + (1 - 4 x)^(3/2) + 6 x - 3(1 - 4 x^2)^(1/2) - 4 (1 - 4 x^3)^(1/2))/12, {x, 0, 33}], x]]] (* Vincenzo Librandi, Nov 25 2015 *)
  • PARI
    Cat(n)=if(n==floor(n),return(binomial(2*n,n)/(n+1)));0
    for(n=2,100,print1(Cat(n-2)/n+Cat(n/2-1)/2+(2/3)*Cat(n/3-1),", ")) \\ Derek Orr, Feb 26 2017

Formula

a(n) = C(n-2)/n + C(n/2-1)/2 + (2/3)*C(n/3-1), where C(n) = Catalan(n) (A000108) and terms are omitted if their subscripts are not integers.
G.f.: (6 + (1 - 4*x)^(3/2) + 6*x - 3*(1 - 4*x^2)^(1/2) - 4*(1 - 4*x^3)^(1/2))/12. - David Callan, Aug 01 2004
a(n) ~ 2^(2*n-4) / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Mar 13 2016
a(n+2) = A000207(n) + A369314(n) = 2*A000207(n) - A208355(n-1) = 2*A369314(n) + A208355(n-1). - Robert A. Russell, Jan 19 2024
G.f.: z^2 * (4*G(z) - G(z)^2 + 3*G(z^2) + 4*z*G(z^3)) / 6, where G(z) = 1 + z*G(z)^2 is the g.f. for A000108. - Robert A. Russell, Apr 06 2024

A070914 Array read by antidiagonals giving number of paths up and left from (0,0) to (n,kn) where x/y <= k for all intermediate points.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 14, 1, 1, 1, 5, 22, 55, 42, 1, 1, 1, 6, 35, 140, 273, 132, 1, 1, 1, 7, 51, 285, 969, 1428, 429, 1, 1, 1, 8, 70, 506, 2530, 7084, 7752, 1430, 1, 1, 1, 9, 92, 819, 5481, 23751, 53820, 43263, 4862, 1, 1, 1, 10, 117, 1240
Offset: 0

Views

Author

Henry Bottomley, May 20 2002

Keywords

Comments

Also related to dissections of polygons and enumeration of trees.
Number of dissections of a polygon into n (k+2)-gons by nonintersecting diagonals. All dissections are counted separately. See A295260 for nonequivalent solutions up to rotation and reflection. - Andrew Howroyd, Nov 20 2017
Number of rooted polyominoes composed of n (k+2)-gonal cells of the hyperbolic (Euclidean for k=0) regular tiling with Schläfli symbol {k+2,oo}. A rooted polyomino has one external edge identified, and chiral pairs are counted as two. For k>0, a stereographic projection of the {k+2,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 27 2024

Examples

			Rows start:
===========================================================
n\k| 0     1      2       3        4        5         6
---|-------------------------------------------------------
0  | 1,    1,     1,      1,       1,       1,        1 ...
1  | 1,    1,     1,      1,       1,       1,        1 ...
2  | 1,    2,     3,      4,       5,       6,        7 ...
3  | 1,    5,    12,     22,      35,      51,       70 ...
4  | 1,   14,    55,    140,     285,     506,      819 ...
5  | 1,   42,   273,    969,    2530,    5481,    10472 ...
6  | 1,  132,  1428,   7084,   23751,   62832,   141778 ...
7  | 1,  429,  7752,  53820,  231880,  749398,  1997688 ...
8  | 1, 1430, 43263, 420732, 2330445, 9203634, 28989675 ...
...
		

Crossrefs

Rows include A000012 (twice), A000027, A000326.
Reflected version of A062993 (which is the main entry).
Cf. A295260.
Polyominoes: A295224 (oriented), A295260 (unoriented).

Programs

  • Maple
    A:= (n, k)-> binomial((k+1)*n, n)/(k*n+1):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 25 2015
  • Mathematica
    T[n_, k_] = Binomial[n(k+1), n]/(k*n+1); Flatten[Table[T[n-k, k], {n, 0, 9}, {k, n, 0, -1}]] (* Jean-François Alcover, Apr 08 2016 *)
  • PARI
    T(n, k) = binomial(n*(k+1), n)/(n*k+1); \\ Andrew Howroyd, Nov 20 2017

Formula

T(n, k) = binomial(n*(k+1), n)/(n*k+1) = A071201(n, k*n) = A071201(n, k*n+1) = A071202(n, k*n+1) = A062993(n+k-1, k-1).
If P(k,x) = Sum_{n>=0} T(n,k)*x^n is the g.f. of column k (k>=0), then P(k,x) = exp(1/(k+1)*(Sum_{j>0} (1/j)*binomial((k+1)*j,j)*x^j)). - Werner Schulte, Oct 13 2015

A295260 Array read by antidiagonals: T(n,k) = number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals up to rotation and reflection (k >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 5, 4, 1, 1, 3, 8, 16, 12, 1, 1, 3, 12, 33, 60, 27, 1, 1, 4, 16, 68, 194, 261, 82, 1, 1, 4, 21, 112, 483, 1196, 1243, 228, 1, 1, 5, 27, 183, 1020, 3946, 8196, 6257, 733, 1, 1, 5, 33, 266, 1918, 10222, 34485, 58140, 32721, 2282
Offset: 1

Views

Author

Andrew Howroyd, Nov 18 2017

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called h.
T(n,k) is the number of unoriented polyominoes containing n k-gonal tiles of the hyperbolic regular tiling with Schläfli symbol {k,oo}. Stereographic projections of several of these tilings on the Poincaré disk can be obtained via the Christensson link. For unoriented polyominoes, chiral pairs are counted as one. T(n,2) could represent polyominoes of the Euclidean regular tiling with Schläfli symbol {2,oo}; T(n,2) = 1. - Robert A. Russell, Jan 21 2024

Examples

			Array begins:
  ===================================================
  n\k|   3     4      5       6        7        8
  ---|-----------------------------------------------
   1 |   1     1      1       1        1        1 ...
   2 |   1     1      1       1        1        1 ...
   3 |   1     2      2       3        3        4 ...
   4 |   3     5      8      12       16       21 ...
   5 |   4    16     33      68      112      183 ...
   6 |  12    60    194     483     1020     1918 ...
   7 |  27   261   1196    3946    10222    22908 ...
   8 |  82  1243   8196   34485   109947   290511 ...
   9 | 228  6257  58140  315810  1230840  3844688 ...
  10 | 733 32721 427975 2984570 14218671 52454248 ...
  ...
		

Crossrefs

Columns k=3..7 are A000207, A005036, A005040, A004127, A005419.
Polyominoes: A295224 (oriented), A070914 (rooted).

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    T[n_, k_] := (u[n, k, 1] + If[OddQ[n], u[(n - 1)/2, k, Quotient[k, 2]], If[OddQ[k], (u[n/2 - 1, k, k - 1] + u[n/2, k, 1])/2, u[n/2, k, 1]]] + (If[EvenQ[n], u[n/2, k, 1]] - u[n, k, 2])/2 + DivisorSum[GCD[n - 1, k], EulerPhi[#]*u[(n - 1)/#, k, k/#] &]/k)/2 /. Null -> 0;
    Table[T[n - k + 2, k + 1], {n, 1, 11}, {k, n + 1, 2, -1}] // Flatten (* Jean-François Alcover, Dec 28 2017, after Andrew Howroyd *)
  • PARI
    \\ here u is Fuss-Catalan sequence with p = k+1.
    u(n,k,r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n,k) = {(u(n,k,1) + if(n%2, u((n-1)/2,k,k\2), if(k%2, (u(n/2-1,k,(k-1)) + u(n/2,k,1))/2, u(n/2,k,1))) + (if(n%2==0, u(n/2,k,1))-u(n,k,2))/2 + sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d,k,k/d))/k)/2}
    for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);

Formula

T(n,k) ~ A295222(n,k)/(2*n) for fixed k.

A005034 Number of nonequivalent dissections of a polygon into n quadrilaterals by nonintersecting diagonals up to rotation.

Original entry on oeis.org

1, 1, 1, 2, 7, 25, 108, 492, 2431, 12371, 65169, 350792, 1926372, 10744924, 60762760, 347653944, 2009690895, 11723100775, 68937782355, 408323229930, 2434289046255, 14598011263089, 88011196469040, 533216750567280, 3245004785069892, 19829768942544276, 121639211516546668
Offset: 0

Views

Author

Keywords

Comments

Also, with a different offset, number of colored quivers in the 2-mutation class of a quiver of Dynkin type A_n. - N. J. A. Sloane, Jan 22 2013
Closed formula is given in my paper linked below. - Nikos Apostolakis, Aug 01 2018
Number of oriented polyominoes composed of n square cells of the hyperbolic regular tiling with Schläfli symbol {4,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Jan 20 2024

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 290.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A295224.
Polyominoes: A005036 (unoriented), A369315 (chiral), A047749 (achiral), A385149 (asymmetric), A001764 (rooted), A001683(n+2) {3,oo}, A005038 {5,oo}.

Programs

  • Mathematica
    p=4; Table[Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) +If[OddQ[n], 0, Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1}]], {n, 0, 20}] (* Robert A. Russell, Dec 11 2004 *)
    Table[(3Binomial[3n,n]/(2n+1)-Binomial[3n+1,n]/(n+1)-If[OddQ[n],-2Binomial[(3n-1)/2,(n-1)/2]-If[1==Mod[n,4],4Binomial[(3n-3)/4,(n-1)/4],0],-2Binomial[3n/2,n/2]]/(n+1))/4,{n,0,30}] (* Robert A. Russell, Jun 19 2025 *)

Formula

a(n) ~ 3^(3*n + 1/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n + 3)). - Vaclav Kotesovec, Mar 13 2016
a(n) = A005036(n) + A369315(n) = 2*A005036(n) - A047749(n) = 2*A369315(n) + A047749(n). - Robert A. Russell, Jan 19 2024
G.f.: (3*G(z) - G(z)^2 + 2*G(z^2) + z*G(z^2)^2 + 2z*G(z^4)) / 4, where G(z)=1+z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Jun 19 2025

Extensions

Name clarified by Andrew Howroyd, Nov 20 2017

A005038 Number of nonequivalent dissections of a polygon into n pentagons by nonintersecting diagonals up to rotation.

Original entry on oeis.org

1, 1, 2, 12, 57, 366, 2340, 16252, 115940, 854981, 6444826, 49554420, 387203390, 3068067060, 24604111560, 199398960212, 1631041938108, 13451978877748, 111765327780200, 934774244822704, 7865200653146905
Offset: 1

Views

Author

Keywords

Comments

Also, with a different offset, number of colored quivers in the 3-mutation class of a quiver of Dynkin type A_n. - N. J. A. Sloane, Jan 22 2013
Number of oriented polyominoes composed of n pentagonal cells of the hyperbolic regular tiling with Schläfli symbol {5,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Jan 23 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=5 of A295224.
Polyominoes: A005040 (unoriented), A369471 (chiral), A369472 (achiral), A001683(n+2) {3,oo}, A005034 {4,oo}, A221184{n-1} {6,oo}.

Programs

  • Mathematica
    p=5; Table[Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) +If[OddQ[n], 0, Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1}]], {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)

Formula

a(n) ~ 2^(8*n + 1/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n + 5/2)). - Vaclav Kotesovec, Mar 13 2016
a(n) = A005040(n) + A369471(n) = 2*A005040(n) - A369472(n) = 2*A369471(n) + A369472(n). - Robert A. Russell, Jan 23 2024

Extensions

a(21) corrected by Sean A. Irvine, Mar 11 2016
Name edited by Andrew Howroyd, Nov 20 2017

A295222 Array read by antidiagonals: T(n,k) is the number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals rooted at a cell up to rotation (k >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 5, 10, 1, 1, 6, 22, 30, 1, 1, 8, 40, 116, 99, 1, 1, 9, 64, 285, 612, 335, 1, 1, 11, 92, 578, 2126, 3399, 1144, 1, 1, 12, 126, 1015, 5481, 16380, 19228, 3978, 1, 1, 14, 166, 1641, 11781, 54132, 129456, 111041, 14000
Offset: 1

Views

Author

Andrew Howroyd, Nov 17 2017

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called F.

Examples

			Array begins:
  ===========================================================
  n\k|     3      4       5        6         7          8
  ---|-------------------------------------------------------
   1 |     1      1       1        1         1          1 ...
   2 |     1      1       1        1         1          1 ...
   3 |     3      5       6        8         9         11 ...
   4 |    10     22      40       64        92        126 ...
   5 |    30    116     285      578      1015       1641 ...
   6 |    99    612    2126     5481     11781      22386 ...
   7 |   335   3399   16380    54132    141778     317860 ...
   8 |  1144  19228  129456   548340   1753074    4638348 ...
   9 |  3978 111041 1043460  5672645  22137570   69159400 ...
  10 | 14000 650325 8544965 59653210 284291205 1048927880 ...
  ...
		

Crossrefs

Columns k=3..5 are A003441, A005033, A005037.

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    T[n_, k_] := DivisorSum[GCD[n-1, k], EulerPhi[#]*u[(n-1)/#, k, k/#]&]/k;
    Table[T[n - k + 3, k], {n, 1, 10}, {k, n + 2, 3, -1}] // Flatten (* Jean-François Alcover, Nov 21 2017, after Andrew Howroyd *)
  • PARI
    \\ here u is Fuss-Catalan sequence with p = k+1.
    u(n,k,r)={r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n,k)=sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d, k, k/d))/k;
    for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);
    
  • Python
    from sympy import binomial, gcd, totient, divisors
    def u(n, k, r): return r*binomial((k - 1)*n + r, n)//((k - 1)*n + r)
    def T(n, k): return sum([totient(d)*u((n - 1)//d, k, k//d) for d in divisors(gcd(n - 1, k))])//k
    for n in range(1, 11): print([T(n, k) for k in range(3, 9)]) # Indranil Ghosh, Dec 13 2017, after PARI

Formula

T(n,k) = Sum_{d|gcd(n-1,k)} phi(d)*u((n-1)/d, k, k/d)/k where u(n,k,r) = r*binomial((k - 1)*n + r, n)/((k - 1)*n + r).
T(n,k) ~ n*A070914(n,k-2)/(n*(k-2)+2) for fixed k.

A295259 Array read by antidiagonals: T(n,k) = number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals rooted at a cell up to rotation and reflection (k >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 4, 13, 16, 1, 1, 6, 22, 64, 52, 1, 1, 6, 35, 147, 315, 170, 1, 1, 8, 49, 302, 1074, 1727, 579, 1, 1, 8, 67, 518, 2763, 8216, 9658, 1996, 1, 1, 10, 87, 843, 5916, 27168, 64798, 55657, 7021
Offset: 1

Views

Author

Andrew Howroyd, Nov 18 2017

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called f.

Examples

			Array begins:
  =========================================================
  n\k|    3      4       5        6         7         8
  ---|-----------------------------------------------------
   1 |    1      1       1        1         1         1 ...
   2 |    1      1       1        1         1         1 ...
   3 |    2      4       4        6         6         8 ...
   4 |    6     13      22       35        49        67 ...
   5 |   16     64     147      302       518       843 ...
   6 |   52    315    1074     2763      5916     11235 ...
   7 |  170   1727    8216    27168     70984    159180 ...
   8 |  579   9658   64798   274360    876790   2319678 ...
   9 | 1996  55657  521900  2837208  11069760  34582800 ...
  10 | 7021 325390 4272967 29828330 142148343 524470485 ...
  ...
		

Crossrefs

Columns k=3..5 are A003446, A005035, A005039.

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    F[n_, k_] := DivisorSum[GCD[n-1, k], EulerPhi[#]*u[(n-1)/#, k, k/#] &]/k;
    T[n_, k_] := (F[n, k] + If[OddQ[k], If[OddQ[n], u[(n-1)/2, k, (k-1)/2], u[n/2-1, k, k-1]], If[OddQ[n], u[(n-1)/2, k, k/2+1], u[n/2-1, k, k]]])/2;
    Table[T[n-k-1, k], {n, 1, 14}, {k, n-2, 3, -1}] // Flatten (* Jean-François Alcover, Jan 19 2018, translated from PARI *)
  • PARI
    \\ here u is Fuss-Catalan sequence with p = k+1.
    u(n,k,r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    F(n,k) = {sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d,k,k/d))/k}
    T(n,k) = {(F(n,k) + if(k%2, if(n%2, u((n-1)/2,k,(k-1)/2), u(n/2-1,k,(k-1))), if(n%2, u((n-1)/2,k,k/2+1), u(n/2-1,k,k)) ))/2;}
    for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);
    
  • Python
    from sympy import binomial, gcd, totient, divisors
    def u(n, k, r): return r*binomial((k - 1)*n + r, n)//((k - 1)*n + r)
    def F(n, k): return sum([totient(d)*u((n - 1)//d, k, k//d) for d in divisors(gcd(n - 1, k))])//k
    def T(n, k): return (F(n, k) + ((u((n - 1)//2, k, (k - 1)//2) if n%2 else u(n//2 - 1, k, k - 1)) if k%2 else (u((n - 1)//2, k, k//2 + 1) if n%2 else u(n//2 - 1, k, k))))//2
    for n in range(1, 11): print([T(n, k) for k in range(3, 9)]) # Indranil Ghosh, Dec 13 2017, after PARI code

Formula

T(n,k) ~ A295222(n,k)/2 for fixed k.

A370062 Array read by antidiagonals: T(n,k) is the number of achiral dissections of a polygon into n k-gons by nonintersecting diagonals, n >= 1, k >= 3.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 4, 7, 5, 1, 1, 3, 5, 9, 12, 5, 1, 1, 4, 6, 18, 22, 30, 14, 1, 1, 4, 7, 21, 35, 52, 55, 14, 1, 1, 5, 8, 34, 51, 136, 140, 143, 42, 1, 1, 5, 9, 38, 70, 190, 285, 340, 273, 42, 1, 1, 6, 10, 55, 92, 368, 506, 1155, 969, 728, 132
Offset: 1

Views

Author

Andrew Howroyd, Feb 08 2024

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.

Examples

			Array begins:
=============================================
n\k|  3   4   5    6    7    8    9    10 ...
---+-----------------------------------------
1  |  1   1   1    1    1    1    1     1 ...
2  |  1   1   1    1    1    1    1     1 ...
3  |  1   2   2    3    3    4    4     5 ...
4  |  2   3   4    5    6    7    8     9 ...
5  |  2   7   9   18   21   34   38    55 ...
6  |  5  12  22   35   51   70   92   117 ...
7  |  5  30  52  136  190  368  468   775 ...
8  | 14  55 140  285  506  819 1240  1785 ...
9  | 14 143 340 1155 1950 4495 6545 12350 ...
  ...
		

Crossrefs

Columns are A208355(n-1), A047749 (k=4), A369472 (k=5), A143546 (k=6), A143547 (k=8), A143554 (k=10), A192893 (k=12).
Cf. A070914 (rooted), A295224 (oriented), A295260 (unoriented), A369929, A370060 (achiral rooted at cell).

Programs

  • PARI
    \\ here u is Fuss-Catalan sequence with p = k-1.
    u(n, k, r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n, k) = {(if(n%2, u((n-1)/2, k, k\2), if(k%2, u(n/2-1, k, k-1), u(n/2, k, 1))))}
    for(n=1, 9, for(k=3, 10, print1(T(n, k), ", ")); print);

Formula

T(n,k) = 2*A295260(n,k) - A295224(n,k).
T(n,2*k+1) = A370060(n,2*k+1).
T(n,2*k) = A369929(n,2*k-1).

A003455 Number of nonequivalent dissections of an n-gon by nonintersecting diagonals up to rotation.

Original entry on oeis.org

1, 2, 3, 11, 29, 122, 479, 2113, 9369, 43392, 203595, 975563, 4736005, 23296394, 115811855, 581324861, 2942579633, 15008044522, 77064865555, 398150807179, 2068470765261, 10800665952376, 56658467018647, 298489772155137, 1578702640556193
Offset: 3

Views

Author

Keywords

Comments

Total number of dissections of an n-gon into polygons without reflection. - Sean A. Irvine, May 15 2015

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    \\ See A295495 for DissectionsModCyclic().
    DissectionsModCyclic(apply(v->1, [1..30])) \\ Andrew Howroyd, Nov 22 2017

Extensions

More terms from Sean A. Irvine, May 15 2015
Name clarified by Andrew Howroyd, Nov 22 2017

A295633 Triangle read by rows: T(n,k) = number of nonequivalent dissections of an n-gon into k polygons by nonintersecting diagonals up to rotation.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 4, 1, 2, 8, 12, 6, 1, 3, 16, 40, 43, 19, 1, 3, 25, 93, 165, 143, 49, 1, 4, 40, 197, 505, 712, 504, 150, 1, 4, 56, 364, 1274, 2548, 2912, 1768, 442, 1, 5, 80, 646, 2878, 7672, 12400, 11976, 6310, 1424, 1, 5, 105, 1050, 5880, 19992, 42840, 58140, 48450, 22610, 4522
Offset: 3

Views

Author

Andrew Howroyd, Nov 24 2017

Keywords

Examples

			Triangle begins: (n >= 3, k >= 1)
1;
1, 1;
1, 1,  1;
1, 2,  4,   4;
1, 2,  8,  12,    6;
1, 3, 16,  40,   43,   19;
1, 3, 25,  93,  165,  143,   49;
1, 4, 40, 197,  505,  712,  504,  150;
1, 4, 56, 364, 1274, 2548, 2912, 1768, 442;
...
		

Crossrefs

Row sums are A003455.
Column k=3 is A003451.
Diagonals include A001683, A220881, A003445, A220882.

Programs

  • PARI
    \\ See A295495 for DissectionsModCyclic()
    T=DissectionsModCyclic(apply(i->y, [1..12]));
    for(n=3, #T, for(k=1, n-2, print1(polcoeff(T[n], k), ", ")); print)
Showing 1-10 of 13 results. Next