cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005034 Number of nonequivalent dissections of a polygon into n quadrilaterals by nonintersecting diagonals up to rotation.

Original entry on oeis.org

1, 1, 1, 2, 7, 25, 108, 492, 2431, 12371, 65169, 350792, 1926372, 10744924, 60762760, 347653944, 2009690895, 11723100775, 68937782355, 408323229930, 2434289046255, 14598011263089, 88011196469040, 533216750567280, 3245004785069892, 19829768942544276, 121639211516546668
Offset: 0

Views

Author

Keywords

Comments

Also, with a different offset, number of colored quivers in the 2-mutation class of a quiver of Dynkin type A_n. - N. J. A. Sloane, Jan 22 2013
Closed formula is given in my paper linked below. - Nikos Apostolakis, Aug 01 2018
Number of oriented polyominoes composed of n square cells of the hyperbolic regular tiling with Schläfli symbol {4,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Jan 20 2024

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 290.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A295224.
Polyominoes: A005036 (unoriented), A369315 (chiral), A047749 (achiral), A385149 (asymmetric), A001764 (rooted), A001683(n+2) {3,oo}, A005038 {5,oo}.

Programs

  • Mathematica
    p=4; Table[Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) +If[OddQ[n], 0, Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1}]], {n, 0, 20}] (* Robert A. Russell, Dec 11 2004 *)
    Table[(3Binomial[3n,n]/(2n+1)-Binomial[3n+1,n]/(n+1)-If[OddQ[n],-2Binomial[(3n-1)/2,(n-1)/2]-If[1==Mod[n,4],4Binomial[(3n-3)/4,(n-1)/4],0],-2Binomial[3n/2,n/2]]/(n+1))/4,{n,0,30}] (* Robert A. Russell, Jun 19 2025 *)

Formula

a(n) ~ 3^(3*n + 1/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n + 3)). - Vaclav Kotesovec, Mar 13 2016
a(n) = A005036(n) + A369315(n) = 2*A005036(n) - A047749(n) = 2*A369315(n) + A047749(n). - Robert A. Russell, Jan 19 2024
G.f.: (3*G(z) - G(z)^2 + 2*G(z^2) + z*G(z^2)^2 + 2z*G(z^4)) / 4, where G(z)=1+z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Jun 19 2025

Extensions

Name clarified by Andrew Howroyd, Nov 20 2017