A005034 Number of nonequivalent dissections of a polygon into n quadrilaterals by nonintersecting diagonals up to rotation.
1, 1, 1, 2, 7, 25, 108, 492, 2431, 12371, 65169, 350792, 1926372, 10744924, 60762760, 347653944, 2009690895, 11723100775, 68937782355, 408323229930, 2434289046255, 14598011263089, 88011196469040, 533216750567280, 3245004785069892, 19829768942544276, 121639211516546668
Offset: 0
References
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 290.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Nikos Apostolakis, Non-crossing trees, quadrangular dissections, ternary trees, and duality preserving bijections, arXiv:1807.11602 [math.CO], July 2018.
- Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
- F. Harary, E. M. Palmer, R. C. Read, On the cell-growth problem for arbitrary polygons, computer printout, circa 1974
- F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.
- P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Quebec 16 (1992), no 1, 53-80.
- P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
- Alexander Stoimenow, On the number of chord diagrams, Discr. Math. 218 (2000), 209-233. See p. 232.
- Torkildsen, Hermund A., Colored quivers of type A and the cell-growth problem, J. Algebra and Applications, 12 (2013), #1250133.
Crossrefs
Programs
-
Mathematica
p=4; Table[Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) +If[OddQ[n], 0, Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1}]], {n, 0, 20}] (* Robert A. Russell, Dec 11 2004 *) Table[(3Binomial[3n,n]/(2n+1)-Binomial[3n+1,n]/(n+1)-If[OddQ[n],-2Binomial[(3n-1)/2,(n-1)/2]-If[1==Mod[n,4],4Binomial[(3n-3)/4,(n-1)/4],0],-2Binomial[3n/2,n/2]]/(n+1))/4,{n,0,30}] (* Robert A. Russell, Jun 19 2025 *)
Formula
a(n) ~ 3^(3*n + 1/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n + 3)). - Vaclav Kotesovec, Mar 13 2016
a(n) = A005036(n) + A369315(n) = 2*A005036(n) - A047749(n) = 2*A369315(n) + A047749(n). - Robert A. Russell, Jan 19 2024
G.f.: (3*G(z) - G(z)^2 + 2*G(z^2) + z*G(z^2)^2 + 2z*G(z^4)) / 4, where G(z)=1+z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Jun 19 2025
Extensions
Name clarified by Andrew Howroyd, Nov 20 2017
Comments