A005038 Number of nonequivalent dissections of a polygon into n pentagons by nonintersecting diagonals up to rotation.
1, 1, 2, 12, 57, 366, 2340, 16252, 115940, 854981, 6444826, 49554420, 387203390, 3068067060, 24604111560, 199398960212, 1631041938108, 13451978877748, 111765327780200, 934774244822704, 7865200653146905
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
- F. Harary, E. M. Palmer, R. C. Read, On the cell-growth problem for arbitrary polygons, computer printout, circa 1974
- F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.
- Hermund A. Torkildsen, Colored quivers of type A and the cell-growth problem, arXiv:1004.4512 [math.RT], 2010.
- Hermund A. Torkildsen, Colored quivers of type A and the cell-growth problem, J. Algebra and Applications, 12 (2013), #1250133. - From _N. J. A. Sloane_, Jan 22 2013
Crossrefs
Programs
-
Mathematica
p=5; Table[Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) +If[OddQ[n], 0, Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1}]], {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)
Formula
a(n) ~ 2^(8*n + 1/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n + 5/2)). - Vaclav Kotesovec, Mar 13 2016
Extensions
a(21) corrected by Sean A. Irvine, Mar 11 2016
Name edited by Andrew Howroyd, Nov 20 2017
Comments