A005068 Sum of 4th powers of odd primes dividing n.
0, 0, 81, 0, 625, 81, 2401, 0, 81, 625, 14641, 81, 28561, 2401, 706, 0, 83521, 81, 130321, 625, 2482, 14641, 279841, 81, 625, 28561, 81, 2401, 707281, 706, 923521, 0, 14722, 83521, 3026, 81, 1874161, 130321, 28642, 625, 2825761, 2482, 3418801, 14641, 706, 279841, 4879681, 81, 2401, 625, 83602, 28561, 7890481, 81
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Array[DivisorSum[#, #^4 &, And[PrimeQ@ #, OddQ@ #] &] &, 54] (* Michael De Vlieger, Jul 11 2017 *) f[2, e_] := 0; f[p_, e_] := p^4; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 50] (* Amiram Eldar, Jun 20 2022 *)
-
PARI
a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%2) == 1, p^4)); \\ Michel Marcus, Jul 11 2017
-
Scheme
(define (A005068 n) (cond ((= 1 n) 0) ((even? n) (A005068 (/ n 2))) (else (+ (A000583 (A020639 n)) (A005068 (A028234 n)))))) ;; Antti Karttunen, Jul 10 2017
Formula
Additive with a(p^e) = 0 if p = 2, p^4 otherwise.
From Antti Karttunen, Jul 10 2017: (Start)
(End)
G.f.: Sum_{k>=2} prime(k)^4 * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Aug 19 2021
Extensions
More terms from Antti Karttunen, Jul 10 2017