A005087 Number of distinct odd primes dividing n.
0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2
Offset: 1
Links
- Lei Zhou, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a005087 n = a001221 n + n `mod` 2 - 1 -- Reinhard Zumkeller, Feb 28 2014
-
Mathematica
nn=100; a=Sum[x^p/(1-x^p), {p, Table[Prime[n],{n,2,nn}]}]; Drop[CoefficientList[Series[a, {x,0,nn}],x],1] (* Geoffrey Critzer, Nov 06 2012 *) Array[PrimeNu[#] - Boole[EvenQ[#]] &, 102] (* Lei Zhou, Dec 03 2012 *)
-
PARI
a(n) = if (n%2, omega(n), omega(n)-1); \\ Michel Marcus, Sep 18 2023
-
Python
from sympy import primefactors def A005087(n): return len(primefactors(n))+(n&1)-1 # Chai Wah Wu, Jul 07 2022
-
Sage
def A005087(n) : return len(prime_divisors(n)) + n % 2 - 1 [A005087(n) for n in (1..80)] # Peter Luschny, Feb 01 2012
Formula
Additive with a(p^e) = 0 if p = 2, 1 otherwise.
a(n) = A001221(n) - 1 + n mod 2. - Reinhard Zumkeller, Sep 03 2003
O.g.f.: Sum_{p=odd prime} x^p/(1-x^p). - Geoffrey Critzer, Nov 06 2012
Sum_{k=1..n} a(k) = n * log(log(n)) + c * n + O(n/log(n)), where c = A077761 - 1/2 = -0.238502... . - Amiram Eldar, Sep 28 2023
Extensions
More terms from Reinhard Zumkeller, Sep 03 2003