A005091 Number of distinct primes = 3 mod 4 dividing n.
0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 2, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 2, 0, 1, 1, 0, 1, 1, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 1, 0, 1, 2, 0, 0, 2, 1, 0, 2, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 2, 0, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 2, 0, 0, 1
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Étienne Fouvry and Peter Koymans, On Dirichlet biquadratic fields, arXiv:2001.05350 [math.NT], 2020.
Programs
-
Haskell
a005091 = sum . map a079261 . a027748_row -- Reinhard Zumkeller, Jan 07 2013
-
Magma
[0] cat [#[p:p in PrimeDivisors(n)| p mod 4 eq 3]: n in [2..100]]; // Marius A. Burtea, Nov 19 2019
-
Magma
[0] cat [&+[Binomial(p,3) mod 2:p in PrimeDivisors(n)]:n in [2..100]]; // Marius A. Burtea, Nov 19 2019
-
Maple
with(numtheory): seq(add(binomial(p,3) mod 2, p in factorset(n)), n=1..100); # Ridouane Oudra, Nov 19 2019
-
Mathematica
f[n_]:=Length@Select[If[n==1,{},FactorInteger[n]],Mod[#[[1]],4]==3&]; Table[f[n],{n,102}] (* Ray Chandler, Dec 18 2011 *)
-
PARI
for(n=1,100,print1(sumdiv(n,d,isprime(d)*if((d-3)%4,0,1)),","))
-
Python
from sympy import primefactors def A005091(n): return sum(1 for p in primefactors(n) if p&3==3) # Chai Wah Wu, Jul 07 2024
Formula
Additive with a(p^e) = 1 if p = 3 (mod 4), 0 otherwise.
From Reinhard Zumkeller, Jan 07 2013: (Start)
a(A072437(n)) = 0.
a(A187811(n)) > 0. (End)
a(n) = Sum_{p|n} (binomial(p,3) mod 2), where p is a prime. - Ridouane Oudra, Nov 19 2019