cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005100 Deficient numbers: numbers k such that sigma(k) < 2k.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86
Offset: 1

Views

Author

Keywords

Comments

A number k is abundant if sigma(k) > 2k (cf. A005101), perfect if sigma(k) = 2k (cf. A000396), or deficient if sigma(k) < 2k (this sequence), where sigma(k) is the sum of the divisors of k (A000203).
Also, numbers k such that A033630(k) = 1. - Reinhard Zumkeller, Mar 02 2007
According to Deléglise (1998), the abundant numbers have natural density 0.2474 < A(2) < 0.2480. Since the perfect numbers have density 0, the deficient numbers have density 0.7520 < 1 - A(2) < 0.7526. Thus the n-th deficient number is asymptotic to 1.3287*n < n/(1 - A(2)) < 1.3298*n. - Daniel Forgues, Oct 10 2015
The data begins with 3 runs of 5 consecutive terms, from 1 to 5, 7 to 11 and 13 to 17. The maximal length of a run of consecutive terms is 5 because 6 is a perfect number and its proper multiples are abundant numbers. - Bernard Schott, May 19 2019
If p and q are primes such that phi(p*q) > p+1, then p*q^n is a term in the sequence for all n >= 1 where phi is the Euler totient function. - Amrit Awasthi, Sep 10 2024

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 128.

Crossrefs

Cf. A005101 (abundant), A125499 (even deficient), A247328 (odd deficient), A023196 (complement).
By definition, the weird numbers A006037 are not in this sequence.

Programs

  • Haskell
    a005100 n = a005100_list !! (n-1)
    a005100_list = filter (\x -> a001065 x < x) [1..]
    -- Reinhard Zumkeller, Oct 31 2015
    
  • Maple
    with(numtheory); s := proc(n) local i,j,ans; ans := [ ]; j := 0; for i while jA005100 := proc(n)
        numtheory[sigma](n) < 2*n ;
    end proc:
    A005100 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA005100(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Jul 08 2015
  • Mathematica
    Select[Range[100], DivisorSigma[1, # ] < 2*# &] (* Stefan Steinerberger, Mar 31 2006 *)
  • PARI
    isA005100(n) = (sigma(n) < 2*n) \\ Michael B. Porter, Nov 08 2009
    
  • PARI
    for(n=1, 100, if(sigma(n) < 2*n, print1(n", "))) \\  Altug Alkan, Oct 15 2015
    
  • Python
    from sympy import divisors
    def ok(n): return sum(divisors(n)) < 2*n
    print(list(filter(ok, range(1, 87)))) # Michael S. Branicky, Aug 29 2021
    
  • Python
    from sympy import divisor_sigma
    from itertools import count, islice
    def A005100_gen(startvalue=1): return filter(lambda n:divisor_sigma(n) < 2*n,count(max(startvalue,1))) # generator of terms >= startvalue
    A005100_list = list(islice(A005100_gen(),20)) # Chai Wah Wu, Jan 14 2022

Formula

A001065(a(n)) < a(n). - Reinhard Zumkeller, Oct 31 2015

Extensions

More terms from Stefan Steinerberger, Mar 31 2006