A005118 Number of simple allowable sequences on 1..n containing the permutation 12...n.
1, 1, 1, 2, 16, 768, 292864, 1100742656, 48608795688960, 29258366996258488320, 273035280663535522487992320, 44261486084874072183645699204710400, 138018895500079485095943559213817088756940800
Offset: 0
References
- D. B. A. Epstein with J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson and W. P. Thurston, Word Processing in Groups, Jones and Bartlett Publishers, Boston, MA, 1992. xii+330 pp.
- J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 102.
- G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..40
- Omer Angel, Alexander E. Holroyd, Dan Romik, and Balint Virag, Random Sorting Networks, arXiv preprint arXiv:0609538 [math.PR], 2006.
- Joerg Arndt, The a(4)=16 Young tableaux of shape [3, 2, 1].
- Sara C. Billey and Peter R. W. McNamara, The contributions of Stanley to the fabric of symmetric and quasisymmetric functions, arXiv preprint, 2015.
- Tobias Boege, Alessio D'Alì, Thomas Kahle, Bernd Sturmfels, The Geometry of Gaussoids, arXiv:1710.07175 [math.CO], 2017.
- R. Davis and B. Sagan, Pattern-Avoiding Polytopes, 2016
- FindStat - Combinatorial Statistic Finder, The number of ways to write a permutation as a minimal length product of simple transpositions
- M. J. Hay, J. Schiff, and N. J. Fisch, Maximal energy extraction under discrete diffusive exchange, arXiv preprint arXiv:1508.03499 [physics.plasm-ph], 2015.
- H. Hiller, Combinatorics and intersection of Schubert varieties, Comment. Math. Helv. 57 (1982), 41-59.
- D. Kim, Finding k Shortest Paths in Cayley Graphs of Finite Groups, Graphs and Combinatorics 40, 120 (2024). See Formula at p. 13.
- G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87. [Annotated scanned copy]
- Joshua Maglione and Christopher Voll, Hall-Littlewood polynomials, affine Schubert series, and lattice enumeration, arXiv:2410.08075 [math.CO], 2024. See pp. 34, 39.
- R. P. Stanley, A combinatorial miscellany
- R. P. Stanley, Ordering events in Minkowski space, arXiv:math/0501256 [math.CO], 2005.
- R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin., 5 (1984), 359-372.
Programs
Formula
a(n) = C(n, 2)!/(1^{n-1} * 3^{n-2} *...* (2n-3)^1 ).
a(n) = (n*(n-1)/2)!/A057863(n-1) (n>=1). - Emeric Deutsch, May 21 2004
From Alois P. Heinz, Nov 18 2012: (Start)
a(n) ~ sqrt(Pi) * n^(n^2/2-n/2+23/24) * exp(n^2/4-n/2+7/24) / (A^(1/2) * 2^(n^2-n/2-7/24)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014
Extensions
Citation corrected by Matthew J. Samuel, Feb 01 2011
Comments