cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005131 A generalized continued fraction for Euler's number e.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, 1, 22, 1, 1, 24, 1, 1, 26, 1, 1, 28, 1, 1, 30, 1, 1, 32, 1, 1, 34, 1, 1, 36, 1, 1, 38, 1, 1, 40, 1, 1, 42
Offset: 0

Views

Author

Keywords

Comments

Only a(1) = 0 prevents this from being a simple continued fraction. The motivation for this alternate representation is that the simple pattern {1, 2*n, 1} (from n=0) may be more mathematically appealing than the pattern in the corresponding simple continued fraction (at A003417). - Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006
If we consider a(n) = A005131(n+1), n >= 0, then we get the simple continued fraction for 1/(e-1). - Daniel Forgues, Apr 19 2011

References

  • Douglas Hofstadter, "Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought".

Crossrefs

Programs

  • Mathematica
    Table[If[Mod[k, 3] == 1, 2/3*(k - 1), 1], {k, 0, 80}] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006 *)
  • PARI
    a(n)=if(n>=0,[1, 2*(n\3), 1][n%3+1]) \\ Jaume Oliver Lafont, Nov 14 2009

Formula

If n==1 (mod 3), then a(n) = 2*(n-1)/3, otherwise a(n) = 1. - Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006
G.f. = (-x^5 + 2*x^4 - x^3 + x^2 + 1)/(x^6 - 2*x^3 + 1). - Alexander R. Povolotsky, Apr 26 2008
{-a(n)-2*a(n+1)-3*a(n+2)-2*a(n+3)-a(n+4)+2*n+8, a(0) = 1, a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 2, a(5) = 1}. - Robert Israel, May 14 2008
a(n) = 1 + 2*(2*n-5) * (cos(2*Pi*(n-1)/3)+1/2)/9. - David Spitzer, Jan 09 2017

Extensions

Edited by M. F. Hasler, Jan 26 2014