cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005133 Number of index n subgroups of modular group PSL_2(Z).

Original entry on oeis.org

1, 1, 4, 8, 5, 22, 42, 40, 120, 265, 286, 764, 1729, 2198, 5168, 12144, 17034, 37702, 88958, 136584, 288270, 682572, 1118996, 2306464, 5428800, 9409517, 19103988, 44701696, 80904113, 163344502, 379249288, 711598944, 1434840718, 3308997062, 6391673638, 12921383032, 29611074174, 58602591708, 119001063028, 271331133136, 547872065136, 1119204224666, 2541384297716, 5219606253184, 10733985041978, 24300914061436, 50635071045768, 104875736986272, 236934212877684, 499877970985660
Offset: 1

Views

Author

Keywords

Comments

Equivalently, the number of isomorphism class of transitive PSL_2(Z) actions on a finite dotted (i.e., having a distinguished element) set of size n. Also the number of different connected dotted trivalent diagrams of size n. - Samuel A. Vidal, Jul 23 2006
Connected and dotted version of A121352. Dotted version of A121350. Unlabeled version of A121356. Unlabeled and dotted version of A121355. - Samuel A. Vidal, Jul 23 2006

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A121357.

Programs

  • Maple
    N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2),t,N+1),polynom),t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3),t,N+1),polynom),t, ascending) : exs23:=sort(add(op(n+1,exs2)*op(n+1,exs3)/(t^n/ n!),n=0..N),t, ascending) : logexs23:=sort(convert(taylor(log(exs23),t,N+1),polynom),t, ascending) : sort(add(op(n,logexs23)*n,n=1..N),t, ascending) ; # Samuel A. Vidal, Jul 23 2006
  • Mathematica
    m = 50; exs2 = Series[ Exp[t + t^2/2], {t, 0, m+1}] // Normal; exs3 = Series[ Exp[t + t^3/3], {t, 0, m+1}] // Normal; exs23 = Sum[ exs2[[n+1]]*exs3[[n+1]]/(t^n/n!), {n, 0, m}]; logexs23 = Series[ Log[exs23], {t, 0, m+1}] // Normal; CoefficientList[ Sum[ logexs23[[n]]*n, {n, 1, m}], t] // Rest (* Jean-François Alcover, Dec 05 2012, translated from Maple *)
  • PARI
    N=50; x='x+O('x^(N+1));
    A121357_ser = serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3)));
    Vec(x*log(serconvol(A121357_ser, exp(x)))') \\ Gheorghe Coserea, May 10 2017

Formula

a(n) = A121355(n)/(n-1)!, a(n) = A121356(n)/n!. - Samuel A. Vidal, Jul 23 2006
If A(z) = g.f. of a(n) and B(z) = g.f. of A121356 then A(z) is the Borel transform of B(z). - Samuel A. Vidal, Jul 23 2006

Extensions

More terms from Samuel A. Vidal, Jul 23 2006
Entry revised by N. J. A. Sloane, Jul 25 2006