A005145 n copies of n-th prime.
2, 3, 3, 5, 5, 5, 7, 7, 7, 7, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 17, 17, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31
Offset: 1
Examples
Triangle begins: 2; 3, 3; 5, 5, 5; 7, 7, 7, 7; ...
References
- Douglas Hofstadter, "Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought", Basic Books, 1995.
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
Crossrefs
Programs
-
Haskell
a005145 n k = a005145_tabl !! (n-1) !! (k-1) a005145_row n = a005145_tabl !! (n-1) a005145_tabl = zipWith ($) (map replicate [1..]) a000040_list a005145_list = concat a005145_tabl -- Reinhard Zumkeller, Jul 12 2014, Mar 18 2011, Oct 17 2010
-
Magma
[NthPrime(Round(Sqrt(2*n))): n in [1..60]]; // Vincenzo Librandi, Jan 18 2020
-
Mathematica
Table[Prime[Floor[1/2 + Sqrt[2*n]]], {n, 1, 80}] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006 *) Flatten[Table[Table[Prime[n], {n}], {n, 12}]] (* Alonso del Arte, Jan 18 2012 *) Table[PadRight[{},n,Prime[n]],{n,15}]//Flatten (* Harvey P. Dale, Feb 29 2024 *)
-
PARI
a(n) = prime(round(sqrt(2*n))) \\ Charles R Greathouse IV, Oct 23 2015
-
Python
from sympy import primerange a = []; [a.extend([pn]*n) for n, pn in enumerate(primerange(1, 32), 1)] print(a) # Michael S. Branicky, Jul 13 2022
-
Python
from math import isqrt from sympy import prime def A005145(n): return prime(isqrt(n<<3)+1>>1) # Chai Wah Wu, Jun 08 2025
Formula
From Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006: (Start)
a(n) = prime(floor(1/2 + sqrt(2*n))).
From Peter Munn, Jan 15 2020: (Start)
When viewed as a square array A(n,k), the following hold for n >= 1, k >= 1:
A(n,k) = prime(n+k-1).
A(n,1) = A(1,n) = prime(n), where prime(n) = A000040(n).
A(n+1,k) = A(n,k+1) = A003961(A(n,k)).
(End)
Sum_{n>=1} 1/a(n)^2 = A097906. - Amiram Eldar, Aug 16 2022
Comments