cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005145 n copies of n-th prime.

Original entry on oeis.org

2, 3, 3, 5, 5, 5, 7, 7, 7, 7, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 17, 17, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31
Offset: 1

Views

Author

Keywords

Comments

Seen as a triangle read by rows: T(n,k) = A000040(n), 1 <= k <= n; row sums = A033286; central terms = A031368. - Reinhard Zumkeller, Aug 05 2009
Seen as a square array read by antidiagonals, a subtable of the binary operation multiplication tables A297845, A306697 and A329329. - Peter Munn, Jan 15 2020

Examples

			Triangle begins:
  2;
  3, 3;
  5, 5, 5;
  7, 7, 7, 7;
  ...
		

References

  • Douglas Hofstadter, "Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought", Basic Books, 1995.

Crossrefs

Sequences with similar definitions: A002024, A175944.
Cf. A000040 (range of values), A003961, A031368 (main diagonal), A033286 (row sums), A097906.
Subtable of A297845, A306697, A329329.

Programs

  • Haskell
    a005145 n k = a005145_tabl !! (n-1) !! (k-1)
    a005145_row n = a005145_tabl !! (n-1)
    a005145_tabl = zipWith ($) (map replicate [1..]) a000040_list
    a005145_list = concat a005145_tabl
    -- Reinhard Zumkeller, Jul 12 2014, Mar 18 2011, Oct 17 2010
    
  • Magma
    [NthPrime(Round(Sqrt(2*n))): n in [1..60]]; // Vincenzo Librandi, Jan 18 2020
    
  • Mathematica
    Table[Prime[Floor[1/2 + Sqrt[2*n]]], {n, 1, 80}] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006 *)
    Flatten[Table[Table[Prime[n], {n}], {n, 12}]] (* Alonso del Arte, Jan 18 2012 *)
    Table[PadRight[{},n,Prime[n]],{n,15}]//Flatten (* Harvey P. Dale, Feb 29 2024 *)
  • PARI
    a(n) = prime(round(sqrt(2*n))) \\ Charles R Greathouse IV, Oct 23 2015
    
  • Python
    from sympy import primerange
    a = []; [a.extend([pn]*n) for n, pn in enumerate(primerange(1, 32), 1)]
    print(a) # Michael S. Branicky, Jul 13 2022
    
  • Python
    from math import isqrt
    from sympy import prime
    def A005145(n): return prime(isqrt(n<<3)+1>>1) # Chai Wah Wu, Jun 08 2025

Formula

From Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006: (Start)
a(n) = prime(floor(1/2 + sqrt(2*n))).
a(n) = A000040(A002024(n)). (End)
From Peter Munn, Jan 15 2020: (Start)
When viewed as a square array A(n,k), the following hold for n >= 1, k >= 1:
A(n,k) = prime(n+k-1).
A(n,1) = A(1,n) = prime(n), where prime(n) = A000040(n).
A(n+1,k) = A(n,k+1) = A003961(A(n,k)).
A(n,k) = A297845(A(n,1), A(1,k)) = A306697(A(n,1), A(1,k)) = A329329(A(n,1), A(1,k)).
(End)
Sum_{n>=1} 1/a(n)^2 = A097906. - Amiram Eldar, Aug 16 2022