A005153 Practical numbers: positive integers m such that every k <= sigma(m) is a sum of distinct divisors of m. Also called panarithmic numbers.
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 66, 72, 78, 80, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240, 252
Offset: 1
References
- H. Heller, Mathematical Buds, Vol. 1, Chap. 2, pp. 10-22, Mu Alpha Theta OK, 1978.
- Malcolm R. Heyworth, More on Panarithmic Numbers, New Zealand Math. Mag., Vol. 17 (1980), pp. 28-34 [ ISSN 0549-0510 ].
- Ross Honsberger, Mathematical Gems, M.A.A., 1973, p. 113.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. K. Srinivasan, Practical numbers, Current Science, 17 (1948), 179-180.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 146-147.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Wayne Dymacek, Letter to N. J. A. Sloane, Jun 15 1978.
- David Eppstein, Egyptian fractions with practical denominators, Nov 20, 2016
- David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
- Paul Erdős, On a Diophantine equation (in Hungarian, with Russian and English summaries), Mat. Lapok, Vol. 1 (1950), pp. 192-210.
- Paul Erdős and J. H. Loxton, Some problems in partitio numerorum, Journal of the Australian Mathematical Society, Vol. 27, No. 3 (1979), pp. 319-331.
- James Grimes and Brady Haran, Practical Numbers, Numberphile video (2023).
- Harvey J. Hindin, Quasipractical numbers, IEEE Communications Magazine, Vol. 18, No. 2 (March 1980), pp. 41-45.
- Paolo Leonetti and Carlo Sanna, Practical numbers among the binomial coefficients, Journal of Number Theory, Vol. 207 (2020), pp. 145-155; arXiv preprint, arXiv:1905.12023 [math.NT], 2019.
- Maurice Margenstern, Sur les nombres pratiques, (in French), Groupe d'étude en théorie analytique des nombres, 1 (1984-1985), Exposé No. 21, 13 p.
- Maurice Margenstern, Les nombres pratiques: théorie, observations et conjectures, Journal of Number Theory, Volume 37, Issue 1 (January 1991), pp. 1-36.
- C. McLeman, Practical number, PlanetMath.org.
- Giuseppe Melfi, On two conjectures about practical numbers, J. Number Theory, Vol. 56, No. 1 (1996), pp. 205-210 [MR96i:11106].
- Giuseppe Melfi, On certain positive integer sequences, arXiv:0404555 [math.NT], 2004.
- Giuseppe Melfi, A survey on practical numbers, Rend. Sem. Mat. Univ. Politec. Torino, Vol. 53, No. 4 (1995), pp. 347-359.
- Giuseppe Melfi, Practical Numbers (old link).
- Paul Pollack and Lola Thompson, Practical pretenders, arXiv:1201.3168 [math.NT], Jan 16 2012.
- Carl Pomerance, Lola Thompson and Andreas Weingartner, On integers n for which X^n-1 has a divisor of every degree, arXiv:1511.03357 [math.NT], 2015.
- Carl Pomerance and Andreas Weingartner, On primes and practical numbers, Ramanujan J. (2021); arXiv preprint, arXiv:2007.11062 [math.NT], 2020.
- Eric Saias, Entiers à diviseurs denses 1, J. Number Theory, Vol. 62, No. 1 (1997), pp. 163-191; uses this definition.
- Carlo Sanna, Practical central binomial coefficients, arXiv:2004.05376 [math.NT], 2020.
- Sai Teja Somu, Ting Hon Stanford Li, and Andrzej Kukla, On Some Results on Practical Numbers, INTEGERS, Volume 23, A68, 2023 [MR4643065].
- Sai Teja Somu and Duc Van Khanh Tran, On Sums of Practical Numbers and Polygonal Numbers, arXiv:2403.13533 [math.NT], 2024.
- A. K. Srinivasan, Practical numbers, Current Science, 17 (1948), 179-180.
- B. M. Stewart, Sums of distinct divisors, Amer. J. Math., Vol. 76, No. 4 (1954), pp. 779-785 [MR64800]
- Zhi-Wei Sun, A conjecture on unit fractions involving primes, preprint, 2015.
- Peter Taylor, Table of n, a(n) for n = 1..1000000.
- Andreas Weingartner, Practical numbers and the distribution of divisors, The Quarterly Journal of Mathematics, Vol. 66, No. 2 (2015), pp. 743-758; arXiv preprint, arXiv:1405.2585 [math.NT], 2014-2015.
- Andreas Weingartner, The constant factor in the asymptotic for practical numbers, Int. J. Number Theory, 16 (2020), no. 3, 629-638; arXiv preprint, arXiv:1906.07819 [math.NT], 2019.
- Andreas Weingartner, Uniform distribution of alpha*n modulo one for a family of integer sequences, arXiv:2303.16819 [math.NT], 2023.
- Eric Weisstein's World of Mathematics, Practical Number.
- Wikipedia, "Complete" sequence. [Wikipedia calls a sequence "complete" (sic) if every positive integer is a sum of distinct terms. This name is extremely misleading and should be avoided. - _N. J. A. Sloane_, May 20 2023]
- Wikipedia, Practical number.
- Robert G. Wilson v, Letter to N. J. A. Sloane, date unknown.
Crossrefs
Programs
-
Haskell
a005153 n = a005153_list !! (n-1) a005153_list = filter (\x -> all (p $ a027750_row x) [1..x]) [1..] where p _ 0 = True p [] _ = False p ds'@(d:ds) m = d <= m && (p ds (m - d) || p ds m) -- Reinhard Zumkeller, Feb 23 2014, Oct 27 2011
-
Maple
isA005153 := proc(n) local ifs,pprod,p,i ; if n = 1 then return true; elif type(n,'odd') then return false ; end if; # not using ifactors here directly because no guarantee primes are sorted... ifs := ifactors(n)[2] ; pprod := 1; for p in sort(numtheory[factorset](n) ) do for i in ifs do if op(1,i) = p then if p > 2 and p > 1+numtheory[sigma](pprod) then return false ; end if; pprod := pprod*p^op(2,i) ; end if; end do: end do: return true ; end proc: for n from 1 to 300 do if isA005153(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jul 07 2023
-
Mathematica
PracticalQ[n_] := Module[{f,p,e,prod=1,ok=True}, If[n<1 || (n>1 && OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p,e} = Transpose[f]; Do[If[p[[i]] > 1+DivisorSigma[1,prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i,Length[p]}]; ok]]]; Select[Range[200], PracticalQ] (* T. D. Noe, Apr 02 2010 *)
-
PARI
is_A005153(n)=bittest(n,0) && return(n==1); my(P=1); n && !for(i=2,#n=factor(n)~,n[1,i]>1+(P*=sigma(n[1,i-1]^n[2,i-1])) && return) \\ M. F. Hasler, Jan 13 2013
-
Python
from sympy import factorint def is_A005153(n): if n & 1: return n == 1 f = factorint(n) ; P = (2 << f.pop(2)) - 1 for p in f: # factorint must have prime factors in increasing order if p > 1 + P: return P *= p**(f[p]+1)//(p-1) return True # M. F. Hasler, Jan 02 2023
-
Python
from sympy import divisors;from more_itertools import powerset [i for i in range(1,253) if (lambda x:len(set(map(sum,powerset(x))))>sum(x))(divisors(i))] # Nicholas Stefan Georgescu, May 20 2023
Formula
Weingartner proves that a(n) ~ k*n log n, strengthening an earlier result of Saias. In particular, a(n) = k*n log n + O(n log log n). - Charles R Greathouse IV, May 10 2013
More precisely, a(n) = k*n*log(n*log(n)) + O(n), where k = 0.74846... (see comments). - Andreas Weingartner, Jun 26 2021
Extensions
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004
Erroneous comment removed by T. D. Noe, Nov 14 2010
Definition changed to exclude n = 0 explicitly by M. F. Hasler, Jan 19 2013
Comments