A005168 n-th derivative of x^x at 1, divided by n.
1, 1, 1, 2, 2, 9, -6, 118, -568, 4716, -38160, 358126, -3662088, 41073096, -500013528, 6573808200, -92840971200, 1402148010528, -22554146644416, 385014881294496, -6952611764874240, 132427188835260480, -2653529921603890560, 55802195178451990896
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..400 (first 100 terms from T. D. Noe)
- R. K. Guy, Letter to N. J. A. Sloane, 1986
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- R. R. Patterson and G. Suri, The derivatives of x^x, date unknown. Preprint. [Annotated scanned copy]
Programs
-
Maple
a:= n-> (n-1)! *coeftayl(x^x, x=1, n): seq(a(n), n=1..30); # Alois P. Heinz, Aug 18 2012
-
Mathematica
Rest[(NestList[ Factor[ D[ #1, x]] &, x^x, 23] /. (x -> 1))/Range[0, 23]] (* Robert G. Wilson v, Aug 10 2010 *)
-
Python
from sympy import var, diff x = var('x') y = x**x l = [[y:=diff(y),y.subs(x,1)/(n+1)][1] for n in range(10)] print(l) # Nicholas Stefan Georgescu, Mar 02 2023
Extensions
One more term from Robert G. Wilson v, Aug 10 2010