cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005200 Total number of fixed points in rooted trees with n nodes.

Original entry on oeis.org

1, 2, 4, 11, 28, 78, 213, 598, 1670, 4723, 13356, 37986, 108193, 309169, 884923, 2538369, 7292170, 20982220, 60451567, 174385063, 503600439, 1455827279, 4212464112, 12199373350, 35357580112, 102552754000, 297651592188, 864460682777, 2512115979800, 7304240074858
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    # First construct T(x), the g.f. for A000081. Then we form A005200 = s and its g.f. A as follows:
    s := [ 1,2 ]; A := series(add(s[ i ]*x^i,i=1..2),x,3); G := series(subs(x=x^2,A),x,3);
    for n from 3 to 30 do t1 := coeff(T,x,n)+add( coeff(T,x,i)*s[ n-i ],i=1..n-1)-add(coeff(T,x,i)*coeff(G,x,n-i),i=1..n-1); s := [ op(s),t1 ]; A := series(A+t1*x^n,x,n+1); G := series(subs(x=x^2,A),x,n+1); od: s; A;
    # second Maple program:
    with(numtheory): b:= proc(n) option remember; local d, j; if n<1 then 0 elif n=1 then 1 else add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1)/ (n-1) fi end: a:= proc(n) option remember; b(n) +add((b(n-i) -b(n-2*i)) *a(i), i=0..n-1) end: seq(a(n), n=1..100); # Alois P. Heinz, Sep 16 2008
  • Mathematica
    terms = 30; (* T = g.f. of A000081 *)
    T[x_] = 0; Do[T[x_] = x*Exp[Sum[ T[x^k]/k, {k, 1, terms}]] + O[x]^(terms+1) // Normal, terms+1];
    A[] = 0; Do[A[x] = T[x]*(1 + A[x] - A[x^2]) + O[x]^(terms+1) // Normal,
    terms+1];
    Drop[CoefficientList[A[x], x] , 1] (* Jean-François Alcover, Sep 30 2011, updated Jan 11 2018 *)
    b[n_] := b[n] = Module[{d, j}, If[n<1, 0, If[n == 1, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]]]; a[n_] := a[n] = b[n] + Sum[ (b[n-i] - b[n-2*i])*a[i], {i, 0, n-1}]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)

Formula

G.f. satisfies A(x)=T(x)[ 1+A(x)-A(x^2) ], where T(x)=x+x^2+2*x^3+... is g.f. for A000081.

A051496 Decimal expansion of the probability that a point of an infinite (rooted) tree is fixed by every automorphism of the tree.

Original entry on oeis.org

6, 9, 9, 5, 3, 8, 8, 7, 0, 0, 6, 0, 9, 8, 9, 2, 3, 3, 2, 1, 6, 6, 3, 1, 2, 1, 8, 6, 2, 0, 1, 4, 2, 7, 6, 7, 1, 6, 3, 6, 8, 1, 4, 5, 5, 4, 6, 3, 5, 4, 2, 1, 6, 1, 9, 8, 9, 7, 5, 9, 2, 2, 0, 3, 2, 0, 0, 4, 6, 4, 1, 9, 2, 5, 6, 2, 9, 5, 6, 1, 2, 1, 4, 8, 7, 8, 4, 8, 0, 6, 0, 2, 8, 2, 6, 5, 4, 8
Offset: 0

Views

Author

Keywords

Comments

F. Harary and E. M. Palmer derive certain functional equations and, using the methods of G. Polya (Acta Math. (1937) Vol. 68, 145-254) and R. Otter (Ann. of Math. (2) 49 (1948), 583-599; Math. Rev. 10, 53), prove that the limiting probability of a fixed point in a large random tree, whether rooted or not, is 0.6995...

Examples

			0.6995388700609892332166312186...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.6.3, p. 304.

Crossrefs

Formula

Equals lim_{n->oo} A005200(n)/(n*A000081(n)).
Equals lim_{n->oo} A005201(n)/(n*A000055(n)).

A173765 Partial sums of A005200.

Original entry on oeis.org

1, 3, 7, 18, 46, 124, 337, 935, 2605, 7328, 20684, 58670, 166863, 476032, 1360955, 3899324, 11191494, 32173714, 92625281, 267010344, 770610783, 2226438062, 6438902174, 18638275524, 53995855636, 156548609636, 454200201824
Offset: 1

Views

Author

Jonathan Vos Post, Feb 24 2010

Keywords

Comments

x. The subsequence of primes in this partial sum begins: 3, 7, 337, 121208284196421093429539251 = a(58).

Examples

			a(28) = 1 + 2 + 4 + 11 + 28 + 78 + 213 + 598 + 1670 + 4723 + 13356 + 37986 + 108193 + 309169 + 884923 + 2538369 + 7292170 + 20982220 + 60451567 + 174385063 + 503600439 + 1455827279 + 4212464112 + 12199373350 + 35357580112 + 102552754000 + 297651592188 + 86446068277.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A005200(i).
Showing 1-3 of 3 results.